CHEM 203

Exam 2November 17, 2010

Your name:						
	This a closed-notes, closed-book exam You may use your set of molecular models This test consists of 10 pages					
	1 11	me: 1h 30 min				
	1.	/9				
	2.	/ 15				
	3.	/16				
	4.	/ 20				
	5.	/ 20				
	6.	/ 20				
	TOTAL	/ 100				

This exam counts for 15% of your CHEM 203 final grade

1. (9 pts.) In class, we discussed the reagents shown below. Provide a concise statement to indicate the purpose for which each compound is used (answer in the appropriate boxes).

used for / as:

H-O-\$-CF₃
O

- 2. (15 pts.) Write accurate structures of:
 - a. An alkyl halide that is likely to react with CH₃ONa to give a product of substitution, and one that is likely to react with CH₃ONa to give a product of elimination:

undergoes substitution	undergoes elimination		

b. The product of E2 reaction of compound A below:

c. An alkane that is a good substrate for radical chlorination and one that is a poor substrate for the same reaction:

d. An olefin containing at least 3 carbon atoms that yields the same alcohol when treated either with BH₃ followed by H₂O₂ and aq. NaOH, or with H₂O and H₂SO₄

e. An olefin than shows no diagnostic IR absorptions besides C=C-H signals, and that gives only dicarboxylic acid $\bf B$ upon treatment with O_3 followed by H_2O_2 and acid:

- 3. (16 pts.) Accounts for the following observations by writing accurate mechanisms for each transformation:
 - (i) treatment of alkene **A** with carbon tetrachloride, CCl₄, in the presence of a radical initiator gives compound **B**:

(ii) heating of alkyl halide C in acetic acid affords **D** as one of the products:

4. (20 pts). An unknown organic compound, **A**, had molecular mass equal to ca. 150 daltons and produced no characteristic absorptions in the IR spectrum. As shown in the reaction scheme below, **A** was recovered unchanged from treatment with NBS in the presence of a radical initiator; however, reaction with Cl₂ in the presence of light afforded three products of mono-chlorination: compounds **B**, **C**, and **D**. Treatment with potassium *tert*-butoxide had no

effect on **B**, but it converted substances **C** and **D** to the same product, **E**. The reaction of **E** with BH_3 followed by H_2O_2 / aq. NaOH afforded product **F**, while its reaction with O_3 , followed by Zn/H^+ provided substances **G** and **H**. The spectra of **A**, **F**, **G**, **H** are provided. Determine the structures of compounds **A-H** and write your answers in the appropriate boxes provided below.

Structure of A:	Structure of B:	Structure of C:		
Structure of D:	Structure of E:	Structure of F:		
Structure of G:	S	tructure of H:		

5. (20 pts.) Propose a method to achieve the transformations shown below. Indicate all the reagents, in the correct order, that are required to induce each transformation. Present your answer as a numbered list displayed above / below each reaction arrow.

Note: it is understood that chiral compounds will be obtained as racemic mixtures.

a.
$$\bigcirc$$
 NH₂

6. (20 pts.) Propose a method for the preparation of compounds a. – e. below starting ONLY with methane and propyne,H−C=C−CH₃, as the source of carbon atoms. You may use any additional reagent that might be needed (e.g., borane, HCl, Mg, H₂O₂, *tert*-BuOK, etc.). Present your answer as a clear flowchart that shows all intermediate steps and products. Substances obtained in one sequence may be used as components of a later sequence.

It is not necessary to draw mechanisms

Characteristic Infrared Absorptions of Common Functional Groups

Functional Group	Bond	Frequency Range (cm ⁻¹)	Functional Group	Bond	Frequency Range (cm ⁻¹)
Alcohol	О–Н	3400 – 3650 (s, broad)	Nitrile	C≡N	2210 – 2260 (w – m)
	C-O	1050 – 1150 (s)	Carboxylic acid	O–H	2500-3100 (s, broad)
Ether	C-O	1000 – 1260		C=O	1700 – 1720 (s)
Amine	N–H	3300 – 3350 (m)	Ester	C=O	1710 – 1750 (s)
Alkane	C–H	2850 – 2950 (m – s)	Acyl halide	C=O	1770 – 1820 (s)
Alkene	=C-H	3020 – 3100 (m)	Acid anhydride	C=O	1740 – 1790 (s)
	C=C	1640 – 1680 (m)			1800 – 1850 (s)
Alkyne	≡С-Н	3270 – 3330 (s)	Amide	C=O	1630 – 1700 (s)
	C≡C	2100 – 2260 (w – m)	Aldehyde, ketone	C=O	1680 – 1730 (s)

Characteristic Proton (¹H) NMR Chemical Shifts

Type of Hydrogen	Structure	Chemical Shift δ (ppm)	Type of Hydrogen	Structure	Chemical Shift δ (ppm)
Reference	(CH₃)₄Si	0.00	Amines	N-C-H	2.3 – 3.0
Alkane, primary	-CH₃	0.7 – 1.3	Alcohol, ether	-O-C-H	3.3 – 4.0
Alkane, secondary	-CH₂-	1.2 – 1.4	Ester	О -С-О-С-Н	3.7 – 4.8
Alkane, tertiary	-С-H	1.4 – 1.7	Olefinic	C=C-H	5.0 – 6.5
Allylic, primary	C=C-CH ₃	1.6 – 1.9	Aromatic	Ar–H	6.5 – 8.0
Methyl carbonyl	O -C-CH ₃	2.1 – 2.5	Aldehyde	О -Ё-Н	9.7 – 10.0
Aromatic methyl	Ar–CH ₃	2.5 – 2.7	Amine	-NH ₂	1 – 5, variable
Alkyne	≡С-Н	2.5 – 2.7	Alcohol	-OH	1 – 5, variable
Alkyl halide (X = Cl, Br, I)	- Ċ-X	2.5 – 4.5	Carboxylic acid	-COOH	11.0 – 12.0