CHEM 203

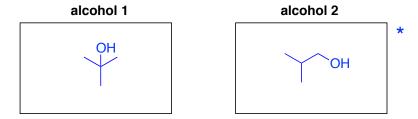
Midterm Exam 1 October 15, 2013

T 7	
Your	name:

This a closed-notes, closed-book exam

You may use your set of molecular models

This exam contains 6 pages

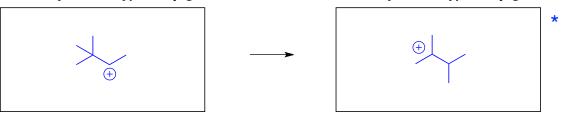

Time: 1h 30 min

- 1. _____/15
- 2. _____/15
- 3. _____/15
- 4. _____/15
- 5. _____/20
- 6. _____/20

TOTAL _____/ 100

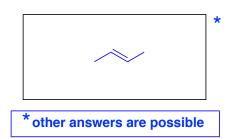
This exam counts for 18.75% of your CHEM 203 final grade

- 1. (15 pts.) Draw accurate structures of (write your answers in the appropriate boxes):
 - a. Two isomeric alcohols that produce the same alkene upon reaction with H₂SO₄ at 180 °C:



b. Two isomeric alkenes that produce only compound **A** upon reaction with O_3 followed by H_2O_2 and H^+ :

c. A carbocation stabilized by 3 hyperconjugative interactions with C–H bonds that rearranges to give a new carbocation stabilized by 7 hyperconjugative interactions with C–H bonds:


stabilized by 3 C-H hyperconjugations

stabilized by 7 C-H hyperconjugations



d. An alkene that contains at least 5 carbon atoms and that produces a *meso* dichloride upon reaction with Cl₂:

e. An alkene that forms an achiral product upon reaction with Br_2 , but a chiral product upon reaction with Br_2 and H_2O :

2. (15 pts.) Check the appropriate box to indicate whether the following reactions represent satisfactory or poor methods for the preparation of the products shown:

3. (15 pts.) Triethylborane, **A**, reacts with chloramine, Cl–NH₂, in the presence of water to give ethylamine, **B**. Write a plausible mechanism (curved arrows, formal charges, etc.) for this reaction (one round only; also, no mech. for the final reaction of the intermediate product with H₂O):

4. (15 pts.) Provide the structure of the major product(s) expected from the following reactions. If no reaction is expected, answer "NO REACTION". **Important**: compounds incorporating multiple stereogenic centers must be drawn with the correct relative configuration.

b.
$$\xrightarrow{1. O_3}$$
 CHO + -CHO

c.
$$\frac{\text{HBF}_4}{\text{CH}_3\text{SH}}$$

d.
$$\frac{H_2SO_4}{CH_3OH}$$

e.
$$\frac{Br_2}{CH_3OH}$$
 $\frac{Br}{CH_3O}$ $\frac{CH_3O}{OCH_3O}$

5. (20 pts.) Complete the following chemical equations by indicating all reagents / catalysts, in the correct order, that are required to convert the substrates into the products. Provide your answer as a numbered list drawn above / below the reaction arrows. If you should conclude that a product cannot be obtained from the starting compound shown by any method known to you, write "INACCESSIBLE" on the reaction arrow.

a.
$$H_2SO_4$$

6. (20 pts.) Propose a method for the preparation of compounds a. – e. below starting from appropriate alkenes. Draw a clear structure of your proposed starting olefin on the left side of the reaction arrow. Above/below the reaction arrow, list all reagents / catalysts, in the correct order, that are required to induce the desired transformation. **Important**: the desired compound must be the major product of your reaction(s). If a product does not appear to be available by any reaction known to you, write "INACCESSIBLE" on the reaction arrow.

Note: it is understood that chiral compounds will be obtained as racemic mixtures.

a.
$$\frac{1. BH_3}{2. H_2O_2, aq. NaOH}$$
b.
$$\frac{1. BH_3}{2. H_2O_2, aq. NaOH}$$
c.
$$\frac{Br_2, H_2O}{OH}$$
d.
$$\frac{1. O_3}{2. Zn, H^+}$$
CHO
$$\frac{H_2SO_4, CH_3SH}{SCH_3}$$