CHEM 203

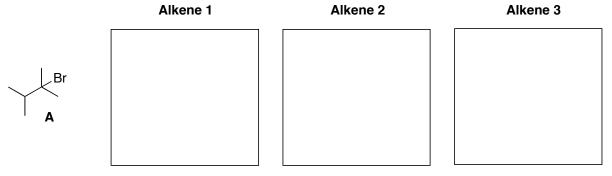
Midterm Exam 1 October 16, 2008

Your name:			

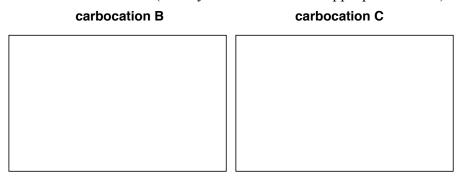
This a closed-notes, closed-book exam

You may use your set of molecular models

This exam contains 7 pages


Time: 1h 30 min

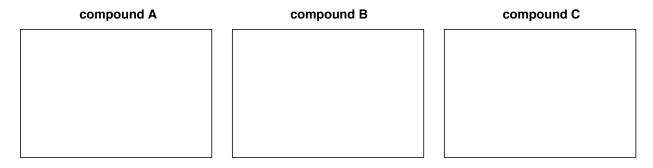
- 1. _____/15
- 2. _____/ 15
- 3. _____/12
- 4. _____/ 18
- 5. _____/ 20
- 6. _____/ 20


TOTAL _____/ 100

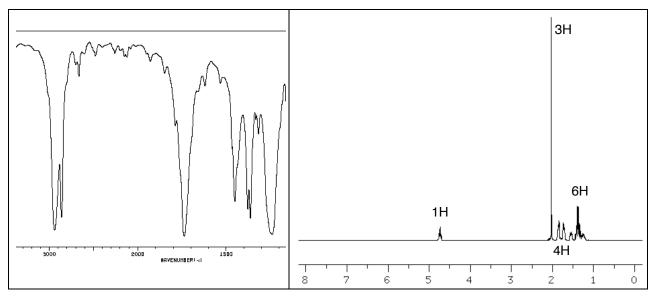
This exam counts for 15% of your CHEM 203 final grade

- 1. (15 pts.) Write accurate structures of:
 - a. A chiral alkene that produces an achiral alkane upon hydrogenation:
 - b. <u>Three</u> isomeric alkenes that produce alkyl bromide **A** as the major product of reaction with HBr (write your answers in the appropriate boxes):

c. A carbocation, **B**, that is stabilized by 4 hyperconjugative interactions with C–H bonds and that is likely to rearrange to form a new carbocation, **C**, stabilized by 7 hyperconjugative interactions with C–H bonds (write your answers in the appropriate boxes):



- d. An alkene that contains at least 5 C atoms, and that produces the same alcohol when treated either with BH $_3$ followed by H $_2O_2$ and aq. NaOH, or with H $_2SO_4$ / H $_2O$:
- e. An alkene that contains at least 5 C atoms, and that produces one alcohol when treated with H_2SO_4 / H_2O , but an isomeric alcohol when reacted with BH_3 followed by H_2O_2 and aq. NaOH:


2. (15 pts.) Two isomeric compounds, \mathbf{A} and \mathbf{B} , possess formula $C_6H_{12}O$. The IR and ¹H NMR spectra of \mathbf{A} and \mathbf{B} are very similar and display the following signals:

IR (cm⁻¹): 3400 (strong, broad), 3100, 2950, 1650, 1180 NMR (δ): 5.68 (m, 2H); 2.54 (broad s, 1H); 1.71 (d, 3H); 1.36 (s, 6H)

Reaction of **A** with H_2 in the presence of Pt metal yields a compound **C** of formula $C_6H_{14}O$ with release of 22.9 kcal/mol of energy. Reaction of **B** under the same conditions also provides compound **C**, but with release of 25.0 kcal/mol of energy. Deduce the structure of **A**, **B**, and **C**. Write these structures in the appropriate boxes below.

3. (12 pts.) Indicate which one among compounds a.-f. below produces the following IR and ¹H NMR spectra (write your answer in the box):

f.
$$OCH_3$$

4. (18 pts.) Provide the structure of the major product expected from the following reactions. **Important**: compounds incorporating multiple stereogenic centers must be drawn with the correct relative configuration.

$$b. \qquad \overbrace{\qquad \qquad \frac{\text{H}_2\text{SO}_4}{\text{MeOH}}}$$

c.
$$\frac{Br_2}{H_2O}$$

d.
$$D \rightarrow BH_3$$
, then H_2O_2 and ag. NaOH

$$\mathsf{f.} \quad \bigcap \quad \frac{\mathsf{Cl_2}}{\longrightarrow}$$

5. (20 pts.) Write an accurate mechanism for the following known reactions:

a.
$$\frac{I_2}{\text{ag. NaHCO}_3}$$

6. (20 pts.) Propose a method for the preparation of compounds a. – e. below starting from appropriate alkenes. Draw a clear structure of your proposed starting olefin on the left side of the reaction arrow. Above/below the reaction arrow, list all reagents / catalysts, in the correct order, that are required to induce the desired transformation. **Important**: the desired compound must be the major product of your reaction(s). If a product does not appear to be available by any reaction known to you, write "INACCESSIBLE" on the reaction arrow.

Note: it is understood that chiral compounds will be obtained as racemic mixtures.

Characteristic Infrared Absorptions of Common Functional Groups

Functional Group	Bond	Frequency Range (cm ⁻¹)	Functional Group	Bond	Frequency Range (cm ⁻¹)
Alcohol	O–H	3400 – 3650 (s, broad)	Nitrile	C≡N	2210 – 2260 (w – m)
	C-O	1050 – 1150 (s)	Carboxylic acid	O–H	2500-3100 (s, broad)
Ether	C-O	1000 – 1260		C=O	1700 – 1720 (s)
Amine	N–H	3300 – 3350 (m)	Ester	C=O	1710 – 1750 (s)
Alkane	C–H	2850 – 2950 (m – s)	Acyl halide	C=O	1770 – 1820 (s)
Alkene	=C-H	3020 – 3100 (m)	Acid anhydride	C=O	1740 – 1790 (s)
	C=C	1640 – 1680 (m)			1800 – 1850 (s)
Alkyne	≡С-Н	3270 – 3330 (s)	Amide	C=O	1630 – 1700 (s)
	C≡C	2100 – 2260 (w – m)	Aldehyde, ketone	C=O	1680 – 1730 (s)

Characteristic Proton (¹H) NMR Chemical Shifts

Type of Hydrogen	Structure	Chemical Shift δ (ppm)	Type of Hydrogen	Structure	Chemical Shift δ (ppm)
Reference	(CH₃)₄Si	0.00	Amines	N-C-H	2.3 – 3.0
Alkane, primary	-CH₃	0.7 – 1.3	Alcohol, ether	-0-С-Н	3.3 – 4.0
Alkane, secondary	-CH₂-	1.2 – 1.4	Ester	О -С-О-С-Н	3.7 – 4.2
Alkane, tertiary	-С-H	1.4 – 1.7	Olefinic	C=C-H	5.0 – 6.5
Allylic, primary	C=C-CH ₃	1.6 – 1.9	Aromatic	Ar–H	6.5 – 8.0
Methyl carbonyl	O −Ö-CH₃	2.1 – 2.4	Aldehyde	О -Ё-Н	9.7 – 10.0
Aromatic methyl	Ar–CH ₃	2.5 – 2.7	Amine	-NH ₂	1 – 5, variable
Alkyne	≡С-Н	2.5 – 2.7	Alcohol	-OH	1 – 5, variable
Alkyl halide (X = Cl, Br, I)	- Ċ-X	2.5 – 4.0	Carboxylic acid	-COOH	11.0 – 12.0