CHEM 203

Midterm Exam 1 October 31, 2008

ANSWERS

Your name:		
i vui name.		

This a closed-notes, closed-book exam

You may use your set of molecular models

This exam contains 8 pages

Time: 1h 30 min

- 1. _____/15
- 2. _____/16
- 3. _____/11
- 4. _____/ 18
- 5. _____/20
- 6. _____/ 20

TOTAL _____/ 100

This exam counts for 15% of your CHEM 203 final grade

- 1. (15 pts.) Write accurate structures of:
 - 1. An alkene containing at least 7 C atoms that is likely to undergo rearrangement upon reaction with HCl, and an alkene also containing at least 7 C atoms that is not likely to undergo rearrangement under the same conditions (write your answers in the appropriate boxes):

likely to undergo rearrangement

NOT likely to undergo rearrangement

2. An achiral alkene that produces a chiral diol upon reaction with OsO₄ followed by aq. NaHSO₃ solution, as well as a chiral dichloride upon reaction with Cl₂:

e.g. (many other answers are possible)

3. An achiral alkene that produces a chiral alcohol upon reaction with BH₃ followed by aq. NaOH and H₂O₂, but an achiral alcohol upon reaction with H₂SO₄ and H₂O:

4. An alkene that contains at least 6 C atoms, and that produces the same alcohol when treated either with BH_3 followed by H_2O_2 and aq. NaOH, or with H_2SO_4 / H_2O :

5. <u>Two</u> isomeric alkenes, **A** and **B**, that produce a 1:1 mixture of compounds **C** and **D** upon reaction with O₃ followed by H₂O₂ and acid:

2. (16 pts.) Correlate the four ¹H NMR spectra shown below with compounds **E-H** (write your answer in the appropriate box).

3. (11 pts.) A compound I of formula $C_{10}H_{12}O$ produces the IR and 1H NMR spectra shown below. Propose a reasonable structure for I (write your answer in the box):

the structure of compound I is:

4. (18 pts.) Provide the structure of the major product expected from the following reactions. **Important**: compounds incorporating multiple stereogenic centers must be drawn with the correct relative configuration.

Note: it is understood that chiral compounds will be obtained as racemic mixtures.

c.
$$Cl_2$$
 Cl_2

f.
$$\frac{H_2SO_4}{H_2O}$$
 OH

5. (20 pts.) Write an accurate mechanism for the following known reactions:

Note: you will still receive full credit on this question if you omitted the second rearrangement, i.e., if you showed:

6. (20 pts.) Propose a method for the preparation of compounds a. – e. below starting from appropriate alkenes. Draw a clear structure of your proposed starting olefin on the left side of the reaction arrow. Above/below the reaction arrow, list all reagents / catalysts, in the correct order, that are required to induce the desired transformation. **Important**: the desired compound must be the major product of your reaction(s). If a product does not appear to be available by any reaction known to you, write "INACCESSIBLE" on the reaction arrow.

Note: it is understood that chiral compounds will be obtained as racemic mixtures.

Characteristic Infrared Absorptions of Common Functional Groups

Functional Group	Bond	Frequency Range (cm ⁻¹)	Functional Group	Bond	Frequency Range (cm ⁻¹)
Alcohol	O–H	3400 – 3650 (s, broad)	Nitrile	C≡N	2210 – 2260 (w – m)
	C–O	1050 – 1150 (s)	Carboxylic acid	O–H	2500-3100 (s, broad)
Ether	C-O	1000 – 1260		C=O	1700 – 1720 (s)
Amine	N–H	3300 – 3350 (m)	Ester	C=O	1710 – 1750 (s)
Alkane	C–H	2850 – 2950 (m – s)	Acyl halide	C=O	1770 – 1820 (s)
Alkene	=C-H	3020 – 3100 (m)	Acid anhydride	C=O	1740 – 1790 (s)
	C=C	1640 – 1680 (m)			1800 – 1850 (s)
Alkyne	≡С-Н	3270 – 3330 (s)	Amide	C=O	1630 – 1700 (s)
	C≡C	2100 – 2260 (w – m)	Aldehyde, ketone	C=O	1680 – 1730 (s)

Characteristic Proton (¹H) NMR Chemical Shifts

Type of Hydrogen	Structure	Chemical Shift δ (ppm)	Type of Hydrogen	Structure	Chemical Shift δ (ppm)
Reference	(CH₃)₄Si	0.00	Amines	N-C-H	2.3 – 3.0
Alkane, primary	-CH₃	0.7 – 1.3	Alcohol, ether	-O-C-H	3.3 – 4.0
Alkane, secondary	-CH ₂ -	1.2 – 1.4	Ester	о -с-о-с-н	3.7 – 4.2
Alkane, tertiary	-С-H	1.4 – 1.7	Olefinic	C=C-H	5.0 – 6.5
Allylic, primary	C=C-CH ₃	1.6 – 1.9	Aromatic	Ar–H	6.5 - 8.0
Methyl carbonyl	O -Ë-CH ₃	2.1 – 2.4	Aldehyde	О -С-Н	9.7 – 10.0
Aromatic methyl	Ar–CH₃	2.5 – 2.7	Amine	-NH ₂	1 – 5, variable
Alkyne	≡С-Н	2.5 – 2.7	Alcohol	-OH	1 – 5, variable
Alkyl halide (X = Cl, Br, I)	-Ċ-X H	2.5 – 4.0	Carboxylic acid	-СООН	11.0 – 12.0