CHEM 203

Midterm Exam 2 November 18, 2008

ANSWERS

T 7							
v	ΛI	ır	n	a	m	Δ	٠
	v	41	ш	а	ш	·	•

This a closed-notes, closed-book exam

You may use your set of molecular models

This exam contains 8 pages

Time: 1h 30 min

- 1. _____/15
- 2. _____/ 15
- 3. _____/15
- 4. _____/ 15
- 5. _____/20
- 6. _____/ 20

TOTAL _____/ 100

This exam counts for 15% of your CHEM 203 final grade

- 1. (15 pts.) Write accurate structures of:
 - 1. An alkyl halide that is likely to undergo nucleophilic substitution by the S_N2 mechanism, and one that is likely to undergo nucleophilic substitution by the S_N1 mechanism (write your answers in the appropriate boxes):

likely to react by S_N2 mechanism

likely to react by S_N1 mechanism

2. A chiral alkyne that produces a chiral product upon reaction with metallic Na in liquid NH_3 but an achiral product upon reaction with H_2 in the presence of metallic Pt.

3. The organic compound of formula $C_6H_{10}O_4$ that reacts with LiAlH₄ followed by mild H_3O^+ to yield the product shown below:

4. The reagents necessary to achieve the conversion of phenylmagnesium bromide into benzoic acid (complete the reaction diagram below):

5. An alkyl halide containing at least 3 carbon atoms that CANNOT undergo E2 reaction

any alkyl halide that lacks a
$$\beta$$
-H, e.g. Br etc.

2. (15 pts.) Appropriate analytical techniques determined that an unknown organic compound **A** contained bromine and had a molecular mass between 160 and 170 daltons. Treatment of **A** with potassium *tert*-butoxide as per the scheme below produced **B**, hydrogenation of which furnished **C**. The ¹H NMR spectra of **A** – **C** are shown below. Deduce the structures of the three compounds and write your answers in the appropriate boxes.

3. (15 pts.) Radical chlorination of 3-methylpentane, **D**, afforded a complex mixture of products, from which five different substances, $\mathbf{E} - \mathbf{I}$, of formula $C_6H_{13}Cl$ were isolated. Appropriate analytical methods revealed that **E** and **F** were achiral, while **G**, **H**, and **I**, were racemic mixtures. Write the structures of compounds $\mathbf{E} - \mathbf{I}$ in the boxes below.

4. (15 pts.) Write a detailed reaction mechanism to account for the fact that heating a solution of **J** in CH₃OH causes the formation of **K** and **L**.

5. (20 pts.) Provide the structure of the major product expected from the following reaction sequences. **Important**: compounds incorporating multiple stereogenic centers must be drawn with the correct relative configuration.

Note: it is understood that chiral compounds will be obtained as racemic mixtures.

b.
$$CH_3$$

$$\begin{array}{c}
1. \text{ NBS, hv} \\
2. \text{ } CH_3 - C \equiv C - \text{Na} \\
\hline
3. \text{ } H_2, \text{ Lindlar catalyst} \\
4. \text{ } OsO_4, \text{ then} \\
\text{ } aq. \text{ NaHSO}_3
\end{array}$$
(or enantiomer)

c. CI 1. O K

2.
$$Br_2$$
, CH_3OH
3. NaN_3
4. $7n/H^+$

OCH₃
(or enantiomer)

6. (20 pts.) Propose a method for the preparation of compounds a. – e. below starting ONLY with 1-butene as the source of carbon atoms. You may use any additional reagent that might be needed (e.g., borane, HCl, Mg, H₂O₂, potassium tert-butoxide, etc.). Present your answer as a clear flowchart that shows all intermediate steps and products. Substances obtained in one sequence may be used as components of a later sequence.

It is not necessary to draw mechanisms