CHEM 203

Final Exam December 11, 2008

Your name:	ANSWERS			
	This a closed-notes, closed-book exam You may use your set of molecular models			
This exam contains 13 pages Time: 2h 30 min				
	Time. 211 30 Inm			
	1/16			
	2/ 24			
	3/20			
	4/30			
	5/ 40			
	6/ 40			
	7/ 40			
	8/ 40			

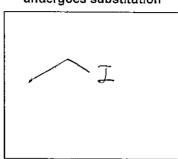
This exam counts for 45% of your CHEM 203 final grade

TOTAL _____/ 250 = _____/ 100

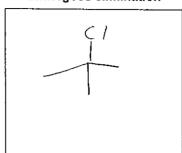
1. (16 pts.) Indicate the approximate pKa's for the Bronsted dissociation of the proton in boldface in the following molecules (write your answers in the appropriate boxes)

CH ₃ -o(⊕ H	H-CI	H S O	н −oso₃н 5
CH ₃ -C≡C-H	H N−H H	HF	СН ₃ СН ₂ О- -Н
25	35	4	18

- 2. (24 pts.) Draw:
 - a. Accurate mechanisms for an example of E2 reaction and an example of E1 reaction:


E1:

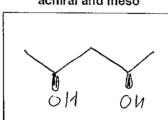
b. Two isomeric alkenes that furnish only compound A upon treatment with O_3 followed by Zn / H⁺ (write your answers in the appropriate boxes):

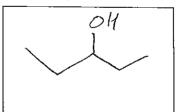

c. A carbocation that is stabilized by NO hyperconjugative interactions with C-H bonds, and that will rearrange to form a new carbocation stabilized by eight hyperconjugative interactions with C-H bonds:

d. An alkyl halide that is likely to react with CH₃ONa to give a product of substitution, and one that is likely to react with CH₃ONa to give a product of elimination:

undergoes substitution

undergoes elimination


e. An alkene that produces an achiral diol when treated with OsO_4 followed by aqueous NaHSO₃, but a chiral diol when treated with MCPBA followed by aqueous H_2SO_4 :


(other answers possible)

f. An achiral molecule that is a meso form, and an achiral molecule that is not a meso form:

achiral and meso

achiral, but not meso

(other answers possible) 3. (20 pts.) Write an accurate mechanism for the following known reactions:

$$\begin{array}{c|c}
 & OH \\
 & H_2SO_4 \\
 & HO \\$$

4. (30 pts.) Check the appropriate box to indicate whether the following procedures represent satisfactory or poor methods for the preparation of the compounds shown:

a.

satisfactory

b.

1. NaH

C.

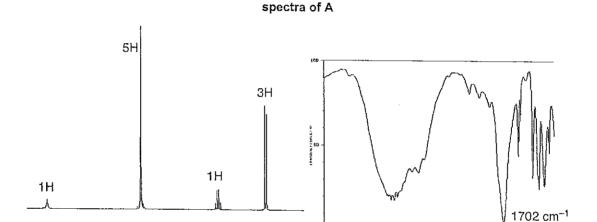
1. PCC 2. CH₃MgBr,

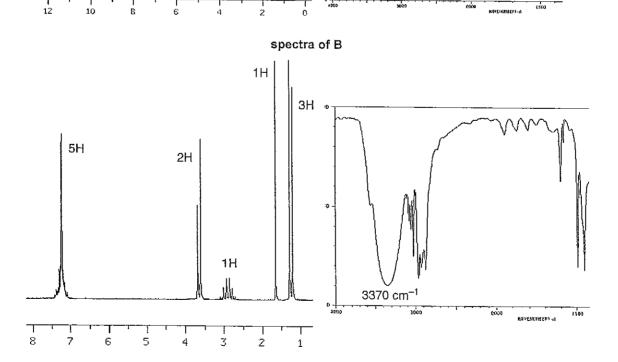
d.

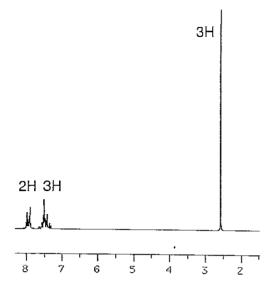
e.

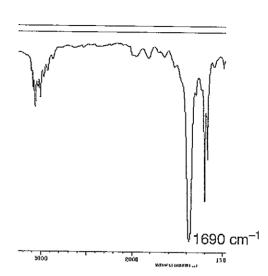
f.

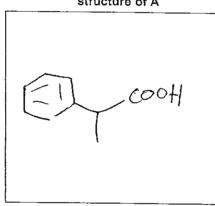
$$CH_3 = \frac{1. BH}{H_2}$$
2. Tsi


1. BH₃, then H₂O₂, aq. NaOH

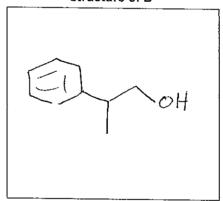

. `ОН

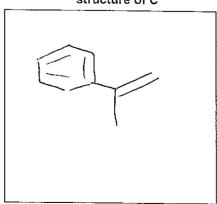

5. (40 pts.) An unknown organic compound, **A**, was found to be possess appreciable anti-inflammatory activity. As indicated in the scheme below, **A** was recovered unchanged from a treatment with NaBH₄; however, it reacted with LiAlH₄ to furnish substance **B**. Reaction of **B** with PBr₃ and treatment of the resultant with potassium tert-butoxide yielded **C**, which upon ozonolysis followed by Zn / H⁺ afforded **D** as one of the products.

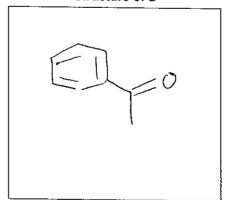

The spectra of A, B, and D are shown below. Deduce the structures of compounds A, B, C, and D and write your answers in the appropriate boxes.



spectra of D



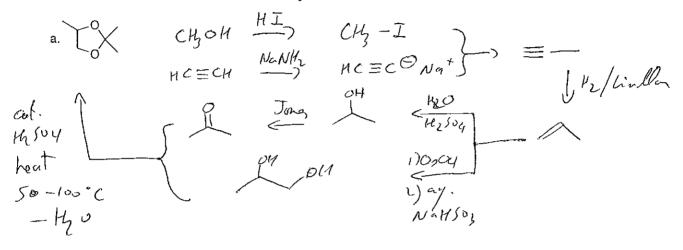

structure of A



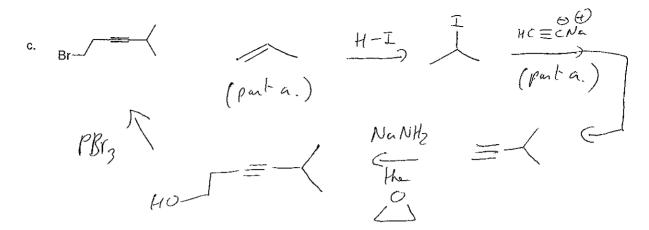
structure of C

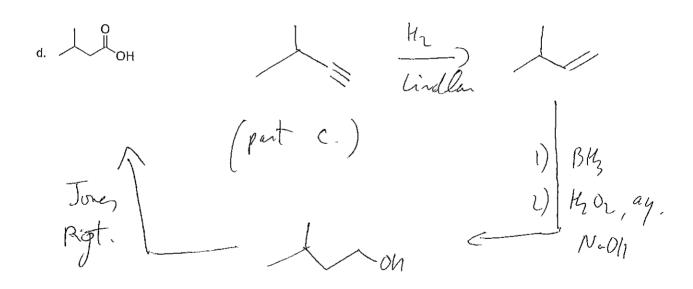
6. (40 pts.) Draw the structure of the major product expected from each of the following reactions. Write your answers in the appropriate boxes. If you should conclude that a given substrate will not react with the reagent(s) shown, write "NO REACTION" in the box.

Important: where appropriate, molecules must be drawn with the correct configuration


a. H
$$\stackrel{\cdot}{Cl}$$
 1. $\stackrel{\cdot}{Cl}$ 2. MCPBA 3. NaCN, then mild H_3O^+ $\stackrel{\cdot}{Dl}$ $\stackrel{\cdot}{Dl}$

7. (40 pts.) Indicate all the reagents, catalysts, etc., in the correct order, that are necessary to induce the transformations outlined below. List such reagents above / below the reaction arrows. If a product does not appear to be available from the substrate shown by any method known to you, write "INACCESSIBLE" on the reaction arrow.


8. (40 pts.) Propose a good synthesis of the molecules shown below using **only** methanol, acetylene and ethylene oxide (see below) as the sources of carbon atoms. Intermediates / products obtained during an earlier sequence may be employed in a subsequent procedure, without showing their preparation again. Assume the availability of all necessary reagents (such as bases, acids, KCN, Mg, TsCl, PCC, PBr₃, MCPBA, etc.).


 CH_3OH H-C=C-H H_2C-CH_2 methanol acetylene ethylene oxide

It is not necessary to write mechanisms

b. $\sim \circ_{CH_3}$ $HC \equiv c \in Na \oplus \longrightarrow = \longrightarrow \circ H$ (pat a) $\downarrow h, Pd$ $\uparrow CH_3 I (pat a.)$ $\downarrow h, Pd$ $\sim \circ \circ Na \uparrow \longrightarrow \circ \circ h$

