CHEM 330

Topics Discussed on Sept 25

Approximate relative rates of ring formation in the above process:

Irreversible nature of the $\mathrm{S}_{\mathrm{N}} 2$ reaction leading to the alkylation of an enolate and consequent success of the formation of strained 3- and 4-membered rings by alkylation chemistry

Recall, one cannot create such strained rings by Claisen-Dieckmann reactions taking place under conditions of reversibility (thermodynamic control): see notes of Sept. 15

Significance of Claisen and Dieckmann products in contemporary synthetic chemistry:

- conversion of simpler 1,3-dicarbonyl compounds into more complex structures by alkylation of their enolates
- preparation of cyclic structures
- assembly of more complex esters and ketones - themselves valuable building blocks — from simpler starting materials
- synthesis of heterocyclic compounds of common occurrence in pharmaceuticals.

Preparation of new esters by retro-Claisen reaction of the above alkylated derivatives (no longer an important method):

Preparation of ketones by decarboxylation of β-ketoesters- especially under acidic conditions (still very useful)

Examples:

The Krapcho reaction: a mild method for the decarboxylation of β-ketoesters:

Possible mechanisms for the Krapcho reaction
Practical importance of simple β-ketoesters of the type $\mathrm{R}-\mathrm{CO}-\mathrm{CH}_{2}$-COOEt in synthetic organic chemistry.

The Yonemitsu reaction: a technologically important method for preparation of β-ketoesters of the type R-CO-CH2-COOEt. This reaction illustrates a special case of successful cross-Claisen condensations of acid chlorides through reaction with stabilized ($\mathrm{pKa}<10$) carbonyl enolates, especially with enolates of active methylene compounds $\left(\mathrm{R}^{1}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{R}^{2}\right)$:

Meldrum's acid: a type of cyclic malonic ester that exhibits enhanced $\mathrm{C}-\mathrm{H}$ acidity ($\mathrm{pKa} \approx 4$) relative to ordinary malonic esters ($\mathrm{pKa} \approx 14$)

Meldrum's acid: $\mathrm{pKa} \approx 4$

Base-promoted acylation of the anion of Meldrum's acid with an aliphatic acid chloride:

note: aromatic acid chlorides are much less reactive than their aliphatic counterparts, and do not perform adequately in the Yonemitsu reaction

Thermal decomposition of acylated Meldrum's acids in alcohol solution:

Presumed mechanism of the above reaction:
i. facile equilibration of the acylated Meldrum's acid with enol tautomers \mathbf{A} and \mathbf{B} :

ii. facile retro-Diels-Alder reaction of tautomer \mathbf{B} leading to a ketene and a molecule of acetone:

ketenes (carbonyl compounds incorporating the functional group $\mathrm{C}=\mathrm{C}=\mathrm{O}$), allenes (olefinic compounds incorporating the functional group $\mathrm{C}=\mathrm{C}=\mathrm{C}$), etc., as "cumulenes": molecules in which a carbon atom establishes two double bonds with a pair of contiguous atoms.
iii. rapid reaction of the extremely electrophilic ketene with EtOH (or any other alcohol)

iv. decarboxylation / tautomerization

