CHEM 330

Topics Discussed on Sept 25

Approximate relative rates of ring formation in the above process:

Irreversible nature of the $S_N 2$ reaction leading to the alkylation of an enolate and consequent success of the formation of strained 3- and 4- membered rings by alkylation chemistry

Recall, one cannot create such strained rings by Claisen-Dieckmann reactions taking place under conditions of reversibility (thermodynamic control): see notes of Sept. 15

Significance of Claisen and Dieckmann products in contemporary synthetic chemistry:

- conversion of simpler 1,3-dicarbonyl compounds into more complex structures by alkylation of their enolates
- preparation of cyclic structures
- assembly of more complex esters and ketones themselves valuable building blocks from simpler starting materials
- synthesis of heterocyclic compounds of common occurrence in pharmaceuticals.

Preparation of new esters by retro-Claisen reaction of the above alkylated derivatives (no longer an important method):

Preparation of ketones by decarboxylation of β -ketoesters– especially under acidic conditions (still very useful)

Examples:

The **Krapcho** reaction: a mild method for the decarboxylation of β -ketoesters:

Possible mechanisms for the Krapcho reaction

Practical importance of simple β -ketoesters of the type R-CO-CH₂-COOEt in synthetic organic chemistry.

The **Yonemitsu reaction**: a technologically important method for preparation of β -ketoesters of the type R-CO-CH₂-COOEt. This reaction illustrates a special case of successful cross-Claisen condensations of acid chlorides through reaction with stabilized (pKa < 10) carbonyl enolates, especially with enolates of active methylene compounds (R¹–CO-CH₂-CO–R²):

Meldrum's acid: a type of cyclic malonic ester that exhibits enhanced C–H acidity (pKa \approx 4) relative to ordinary malonic esters (pKa \approx 14)

Base-promoted acylation of the anion of Meldrum's acid with an **aliphatic** acid chloride:

note: aromatic acid chlorides are much less reactive than their aliphatic counterparts, and do not perform adequately in the Yonemitsu reaction

Thermal decomposition of acylated Meldrum's acids in alcohol solution:

Presumed mechanism of the above reaction:

i. facile equilibration of the acylated Meldrum's acid with enol tautomers A and B:

ii. facile retro-Diels-Alder reaction of tautomer **B** leading to a ketene and a molecule of acetone:

ketenes (carbonyl compounds incorporating the functional group C=C=O), allenes (olefinic compounds incorporating the functional group C=C=C), etc., as "cumulenes": molecules in which a carbon atom establishes **two** double bonds with a pair of contiguous atoms.

iii. rapid reaction of the extremely electrophilic ketene with EtOH (or any other alcohol)

iv. decarboxylation / tautomerization

