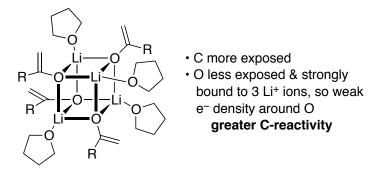
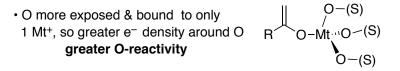

CHEM 330

Topics Discussed on Oct 2

Effect of solvent: C-reactivity is more pronounced in enolates prepared in mildly Lewis basic (=weakly coordinating) solvents, such as tetrahydrofuran (THF). O-reactivity is more pronounced in enolates prepared in strongly Lewis basic solvents (=strongly coordinating), e.g., DMSO, HMPA, DMPU and the like.


HMPA (hexamethylphosphoric triamide) as a very polar, strongly Lewis basic solvent

Toxic and carcinogenic properties of HMPA and use of dimethyl propylene urea (DMPU) as a safer alternative


Urea: a compound of formula H_2N -CO- NH_2 , and by extension, a functional group containing the N-CO-N arrangement of atoms

Influence of the solvent on the degree of aggregation of enolates:

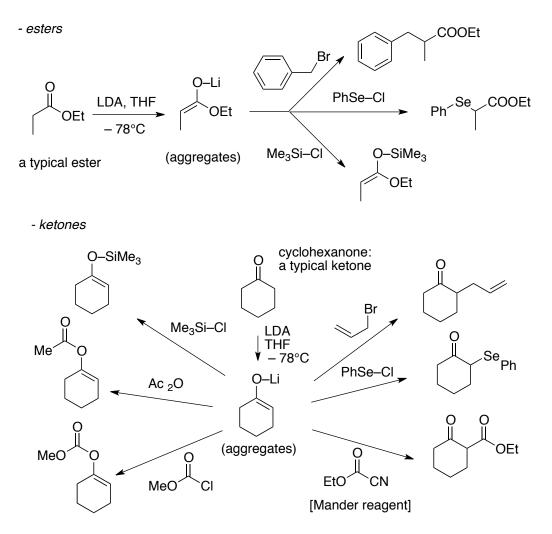
enolates prepared in weakly coordinating solvents, such as THF, exist in solution as aggregates. Thus, many carbonyl enolates prepared by deprotonation with LDA in THF (-78°C) are tetrameric. The tetramer displays a cubic core of alternating Li and O atoms:

enolates prepared in strongly coordinating solvents, such as DMSO, HMPA, DMPU... exist in solution as monomers:

"Naked" enolates: essentially free enolate anions existing in equilibrium with the monomeric form of the enolate in a strongly coordinating solvent:

Methods to study the state of aggregation of enolates: colligative measurements and / or NMR spectrometry of enolate solutions

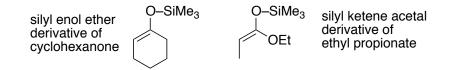
Reminder: colligative properties of solutions are those that depend on the total number of *particles* (**not** concentration) of a solute present in the medium, and include: lowering of the vapor pressure and of the freezing point of the solution relative to pure solvent, increase in osmotic pressure, elevation of the boiling point, etc.


Nature of the electrophile: this is by far the most significant factor that determines C-vs. O-reactivity. The table below lists the C- vs. O-reactivity of enolates toward a range of common electrophiles of interest in CHEM 330 and in modern synthetic chemistry.

type of electrophile	C-reactivity	(intermediate - of no interest to us)	O-reactivity
alkyl halides and congeners R-CH ₂ –X (mostly primary)	X = I, Br	(X = CI, OTs)	X = OSO ₂ OR
epoxides	\triangle		
acyl derivatives O R X	√= X = OR', CN, N	≂` ⊳N	X = halogen O $X = O$
sulfenyl & selenenyl halides	R-S–Cl R-Se–Br		
trialkylsilyl halides (very important)			R₃Si–Cl

Note: the reasons why particular electrophiles prefer to react at the C terminus of an enolate, while others favor reaction at O, are manifold, complex, and not fully understood.

Interpretations based of Hard / Soft Acid – Base (HSAB) theory have been advanced, but are not fully satisfactory. In CHEM 330 we are not concerned about the rationale for the C- vs. O-preference of such electrophiles. We simply accept the data in the table as fact.


Examples of C- and O-derivatization of enolates:

Enol esters and enol carbonates: structures obtained upon O-acylation of a carbonyl enolate:

Silyl enol ethers and silyl ketene acetals: compounds obtained upon O-silylation of the enolate of a ketone and of an ester, respectively:

Irreversible nature of the reaction of a carbonyl enolate with the electrophiles shown in the table above