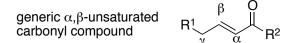
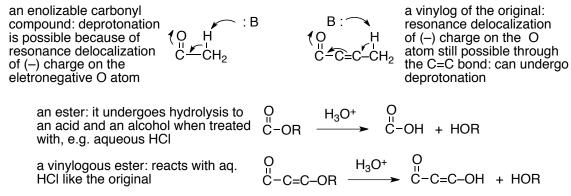

## **CHEM 330**

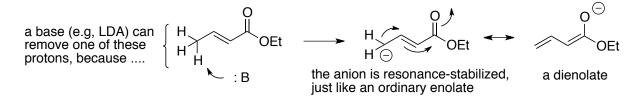

## **Topics Discussed on Oct 16**

Deprotonation of  $\alpha$ , $\beta$ -unsaturated (= conjugated) carbonyl compounds

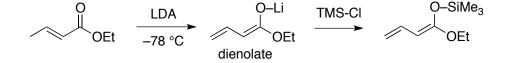
**Important**: bases cannot abstract protons connected to the olefinic  $\alpha$ -position of a conjugated carbonyl compound, because resonance interactions force the C=O and C=C  $\pi$ -systems to be coplanar As a result, the dihedral angle  $\theta$  between the axis of the olefinic  $\alpha$ -C–H s bond and the axis of the lobes of the  $\pi^*_{C=O}$  orbital is ca. 90°. There is no overlap between  $\sigma_{C-H}$  and  $\pi^*_{C=O}$  orbitals  $\rightarrow$  no deprotonation is possible



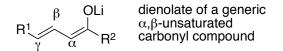

Definition of  $\alpha$ ,  $\beta$ ,  $\gamma$ , ... carbons of an  $\alpha$ , $\beta$ -unsaturated carbonyl compound



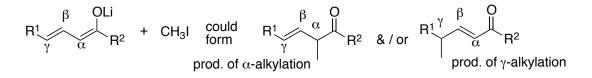

Principle of vinylogy (= "vinyl analogy"): the interposition of a C=C unit between the components of a functional group generates a new chemical entity, which retains the chemical characteristics of the original


## Examples:



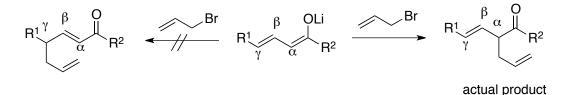

Deprotonation of  $\alpha$ , $\beta$ -unsaturated esters: conversion of, e.g., ethyl crotonate into a dienolate



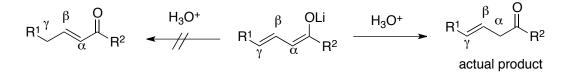

Normal O-reactivity of dienolates of conjugated esters with, e.g., TMS-Cl:



Definition of  $\alpha$ ,  $\beta$ ,  $\gamma$ , etc., positions of a dienolate:



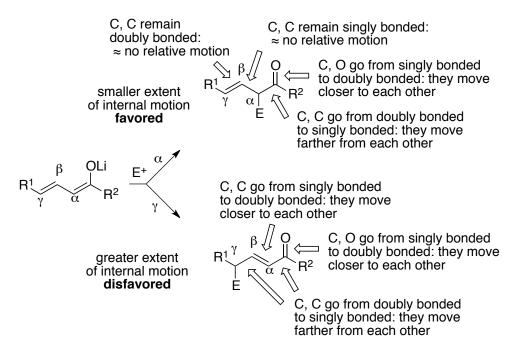

Potential C-reactivity of a dienolate at the  $\alpha$ -carbon or at the  $\gamma$ -carbon, e.g.:



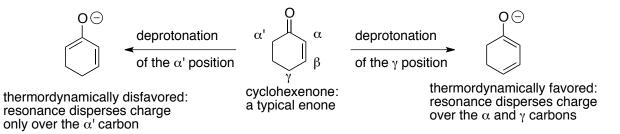

Principle: the nucleophilic C-reactivity of dienolates is expressed selectively at the  $\alpha$ -carbon. This is true both for alkylation and for protonation. E.g.:

• α-alkylation of dienolates:



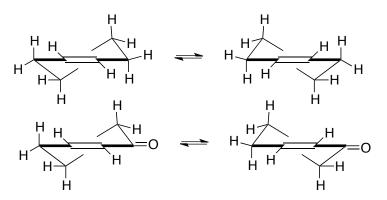

• α-protonation of dienolates: formation of deconjugated carbonyl compounds:



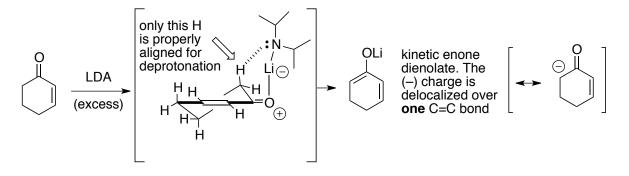

Molecular orbital based rationale for selective  $\alpha$ -carbon reactivity of dienolates: greater electronic density at the  $\alpha$ -carbon relative to the  $\gamma$ -carbon, and consequent greater  $\alpha$ -nucleophilicity relative to  $\gamma$ -nucleophilicity

**Principle of least motion**: a reaction that could theoretically lead to multiple products tends to form preferentially the product that requires the least amount of internal motion due to the repositioning / displacement of atoms during rehybridization.

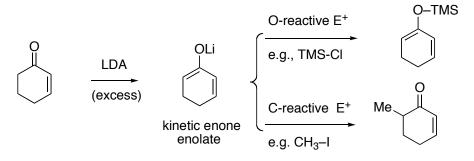
Invoking the principle of least motion to rationalize the selective  $\alpha$ -carbon reactivity of dienolates:



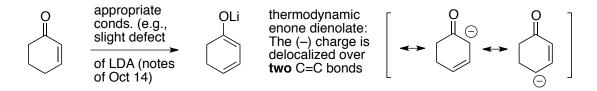

Deprotonation of  $\alpha$ , $\beta$ -unsaturated ketones (= enones), e.g., cyclohexenone: potential formation of two regioisomeric dienolates:



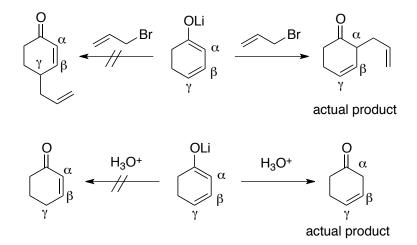

Deprotonation of, e.g., cyclohexenone under kinetic (non-equilibrating) conditions (slight excess of LDA, THF, -78 °C): deprotonation occurs selectively at the  $\alpha'$  position:


• proper representation of the half-chair conformation of cyclohexene and of cyclohexenone:

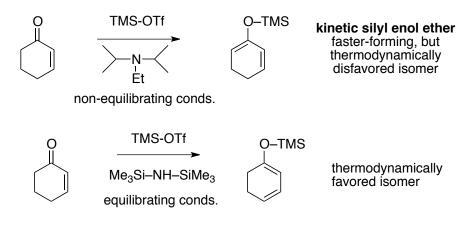



• formation and fate of the enone-LDA complex:




Normal O- and C-reactivity of kinetic dienolates of enones




Deprotonation of enones under thermodynamic (equilibrating) conditions: deprotonation occurs selectively at the  $\gamma$  position:



Selective  $\alpha$ -alkylation and protonation of thermodynamic enone dienolates:



Soft enolization of enones such as cyclohexenone leading directly to regiochemically defined silyl enol ethers

