
CHEM 330 
 

Topics Discussed on Oct 16 
 
Deprotonation of α,β-unsaturated (= conjugated) carbonyl compounds 
 

 Important: bases cannot abstract protons connected to the olefinic α-position of  
 a conjugated carbonyl compound, because resonance interactions force the C=O  
 and C=C π-systems to be coplanar As a result, the dihedral angle θ between the  
 axis of the olefinic α-C–H s bond and the axis of the lobes of the π*C=O orbital is ca. 90°.  
 There is no overlap between σC–H and π*C=O orbitals à no deprotonation is possible 
 

 
 
Definition of α, β, γ, … carbons of an α,β-unsaturated carbonyl compound 
 

 
 
Principle of vinylogy (= "vinyl analogy"): the interposition of a C=C unit between the 
components of a functional group generates a new chemical entity, which retains the chemical 
characteristics of the original 
 
 Examples: 

 
 

 
 
Deprotonation of α,β-unsaturated esters: conversion of, e.g., ethyl crotonate into a dienolate 
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Normal O-reactivity of dienolates of conjugated esters with, e.g., TMS-Cl: 
 

 
 
Definition of α, β, γ, etc., positions of a dienolate: 
 

 
 
Potential C-reactivity of a dienolate at the α-carbon or at the γ-carbon, e.g.: 
 

 
 
Principle: the nucleophilic C-reactivity of dienolates is expressed selectively at the α-carbon.  
This is true both for alkylation and for protonation. E.g.: 
 
 • α-alkylation of dienolates: 
 

 
 
 • α-protonation of dienolates: formation of deconjugated carbonyl compounds: 
 

 
 
Molecular orbital based rationale for selective α-carbon reactivity of dienolates: greater 
electronic density at the α-carbon relative to the γ-carbon, and consequent greater α-
nucleophilicity relative to γ- nucleophilicity 
 
Principle of least motion: a reaction that could theoretically lead to multiple products tends to 
form preferentially the product that requires the least amount of internal motion due to the 
repositioning / displacement of atoms during rehybridization.  
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Invoking the principle of least motion to rationalize the selective α-carbon reactivity of 
dienolates: 
 

 
 
Deprotonation of α,β-unsaturated ketones (= enones), e.g., cyclohexenone: potential formation 
of two regioisomeric dienolates: 
 

 
 
Deprotonation of, e.g., cyclohexenone under kinetic (non-equilibrating) conditions (slight excess 
of LDA, THF, –78 °C): deprotonation occurs selectively at the α' position: 
 
 • proper representation of the half-chair conformation of cyclohexene and of cyclohexenone: 
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 • formation and fate of the enone-LDA complex: 
 

 
 
Normal O- and C-reactivity of kinetic dienolates of enones  
 

 
 
Deprotonation of enones under thermodynamic (equilibrating) conditions: deprotonation occurs 
selectively at the γ position: 
 

 
 
Selective α-alkylation and protonation of thermodynamic enone dienolates: 
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Soft enolization of enones such as cyclohexenone leading directly to regiochemically defined 
silyl enol ethers 
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