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Topics Discussed on Oct 19 
 
Principle: the alkylation of cyclohexanone enolates is of special importance in the synthesis of 
compounds of current biomedical interest. This is because many such compounds incorporate:  
 
 (i) substituted six-membered rings that could be created by alkylation of a cyclohexanone      
      in a regio- and stereocontrolled manner, and/or  
 

 (ii) acyclic segments that contain multiple stereogenic carbons, and that may be created by  
      alkylation of a cyclohexanone in a regio- and stereocontrolled manner, followed by oxidative  
      cleavage of the ring: 
 

 
 
 Therefore, we need to explore additional regiochemical and stereochemical aspects   
 of cyclohexanone enolate generation/alkylation in detail. 
 
Difficulties encountered in the regioselective deprotonation of ketones such as 3-substituted 
cyclohexanones, e.g.: 
 
 Suppose that one needed to prepare compound A. In principle, one could make A by  
 alkylation of the appropriate regioisomer of the enolate of 3-methylcyclohexanone B  
 (enolate C). However, deprotonation of B would afford a mixture of enolates C and D  
 with virtually no selectivity. The result would be a wasteful formation of desired A and  
 undesired E, which then would have to be separated.   
 

 
 

Is there any way to create enolates C and D regioselectively? 
 
Use of an unsaturated variant of the above ketone (= an enone, i.e., an alkene-ketone) to control 
the regioselectivity of enolate formation:  
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Regioselective kinetic deprotonation of the above enone with LDA (THF, –78 °C), e.g. in the 
preparation of compound E in a selective manner: 
 

 
 
Regioselective formation of enolates through dissolving metal (mostly Li, sometimes Na, or K) 
reduction of enones (= α,β-unsaturated ketones) in liquid NH3 in the presence of tert-butanol: 
 

 
 
Nature of a solution of Li (or Na, or K) in liquid NH3: dissociation of the metal into a metal ion 
and an electron (both solvated), e.g.: 
 

 
 
Powerful reducing properties of a solution of Li (or Na, or K) in liquid NH3 (≈ a solution of 
electrons) 
 
Mechanistic aspects of the dissolving metal reduction of enones 
 
 • Radical anions and dianions 
 

 • Use of a proton donor such as tBuOH to accelerate the protonation of a (presumed) dianion  
    intermediate formed during dissolving metal reductions of enones 
 
C- and O- reactivity of the enolates thus obtained: 
 

 
 
Stereochemical aspects of the alkylation of the above enolates, e.g.: 
 

O

a ketone

O

an enone

completely
regioselective

MeI
O LDA

THF

–78 °C

O O
H2

Pd(C)

O

E

completely
regioselective

O Li
liq. NH3

O

OH

Li(solid)

NH3 (liq.)
Li(solution)

Li             +         e
(solvated) (solvated)

O–Li
TMS-Cl

O–TMS O
MeI completely

regioselective



lecture of Oct 19  p. 3 

 
 
Principle: stereochemical aspects of the alkylation of cyclohexanone enolates may be understood 
starting with an analysis of the stereochemical preferences of simpler, conformationally 
constrained cyclohexanones.  
 
4-tert-Bu-cyclohexanone as a simple, conformationally constrained cyclohexanone:  
 

 
 
Possible sterochemical outcome of the alkylation of the enolate of 4-tert-Bu-cyclohexanone with, 
e.g., MeI: diastereomeric products will result depending on whether the enolate reacts with the 
electrophile from the top – or from the bottom face of the enolate: 
 

 
 

will there be any preference for one particular mode of reactivity? 
 
Principle: the alkylation of an enolate with an alkyl halide is irreversible, therefore, the reaction 
occurs under kinetic control. This means that the major product of the reaction will be the one 
obtained through the least energetic transition state. 
 
Pyramidalization of the nucleophilic sp2 C atom of an enolate as it rehybridizes to an sp3 state 
during alkylation 
 
Approximate transition states for the alkylation of the enolate of 4-tert-Bu-cyclohexanone from 
the top or the bottom face of the π system: 
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Reaction diagram for the alkylation of a conformationally rigid cyclohexanone enolate: 
 

 
 Because the reaction is irreversible, the product distribution will be determined solely  
 by the relative energies of the transition states; i.e., the major product will be the one  
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 that forms through the least energetic transition state. The reaction is said to proceed 
 under kinetic control 
 
Principle: the alkylation of conformationally rigid cyclohexanone enolates tends to occur so that 
the pyramidalization of the nucleophilic C atom of the enolate (i.e., the transition from a planar 
sp2 hybrid to a tetrahedral sp3 hybrid) causes the ring to evolve toward a chair conformer. This is 
the same as saying that alkylation of cyclohexanone enolates tends to occur in the axial mode. 
 
Isomerization of the kinetic (axial) product of C-alkylation of an enolate to the thermodynamic 
(equatorial) isomer upon treatment with a catalytic amount of weak base that induces reversible 
enolate formation, e.g., MeONa / MeOH: 
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