Chemistry 204: Carboxylic Acids and their Derivatives

Carboxylic Acids
Introduction. Nomenclature. Properties. Acid-Base Chemistry
general structure:
Spectroscopy of Carboxylic Acids:
Nomenclature.

- To name carboxylic acids:
 -change the –e ending of alkane to –oic acid
 carboxylic carbon is always carbon #1

When the –OH group is (theoretically) removed from the carboxylic acid, acyl groups are obtained:
Structure of Carboxylic Acids: Hydrogen Bonding
carboxylic acids exist mostly as dimers:
Because of this association and the strongly polar nature of the carboxyl group, carboxylic acids have boiling points considerably higher than than other compounds of similar weight
Acidity of Carboxylic Acids
In carboxylate anions, resonance stabilization is important and can be used to assist to rationalization of the appreciable acidity of carboxylic acids.
Compare the acidity of carboxylic acids with that of alcohols:

Thus, carboxylic acids exhibit appreciable acidity and react with relatively weak bases to form salts. The fact that these salts are soluble in water provides a convenient method for the separation of carboxylic acids from water-insoluble nonacidic (organic) compounds.

Substituent Effects on Acidity of Carboxylic Acids

In general, electron-withdrawing groups near the COOH group stabilize the carboxylate anion and therefore *increase* the acidity of the acid. Electron-donating groups have the opposite effect.

• (C203) Oxidation of 1° Alcohols	
Hydrolysis of Nitriles (section Ch 18.4E)	
mechanism of acid hydrolysis:	

mechanism of base hydrolysis:
• Carboxylation of R-MgX or R-Li with CO ₂
Carboxylation of N-ingX of N-E1 with CO2
Note: three complementary methods of increasing a carbon chain by one carbon:

Reactions of Carboxylic Acids
• (C203) Reduction using lithium aluminum hydride (LiAlH ₄)
• Formation of Acid Chloridge From Carbovylie Acide Heing thiopyl chloride (SOCL)
• Formation of Acid Chlorides From Carboxylic Acids Using thionyl chloride (SOCl ₂)
mechanism:
Acid-catalyzed Formation of Esters Using Alcohols (Fischer esterification)
-important method for converting carboxylic acids into esters

mechanism:
examples:
Functional Derivatives of Carboxylic Acids
Functional derivatives of carboxylic acids are those compounds that are transformed into carboxylic acids by hydrolysis.

Reactivity Considerations
The typical reaction of carboxylic acids and their functional derivatives is nucleophilic acyl substitution . This process proceeds by a tetrahedral intermediate .
General mechanisms:
a) direct attack by a nucleophile

Resonance in functional derivatives of carboxylic acids:

The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The rate of nucleophilic acyl substitution depends primarily on two factors:
The face of hadicophilic doys substitution depends primarily on two factors.
a) electronics: the more polarized the carbonyl group, the faster the reaction
a) electronics. the more polarized the carbonyl group, the laster the reaction
b) steric factors: in general, other factors being equal, more sterically hindered carbonyl groups are attacked less readily than less hindered carbonyl groups

Specific Reactions:
We will use the summary, and look at selected mechanisms and some additional reactions of acyl derivatives of carboxylic acids.
base and acid-catalyzed hydrolysis of nitriles formation of acid chlorides from carboxylic acids acid-catalyzed esterification of carboxylic acids (Fischer esterification)
- these have been discussed previously
4) hydrolysis of esters to carboxylic acids
mechanism (acid catalysis)
medianism (and datalysis)
A related reaction is acid-catalyzed transesterification of one ester to another:
mechanism:

back to the reaction of esters to acids (hydrolysis)

alternate mechanism 1 (t-butyl, benzyl esters; acid catalysis)
Hydrolysis of esters in aqueous base is called <i>saponification</i> . This hydrolysis process is non-reversible, and uses a stoichiometric amount of base
5) hydrolysis of acid chlorides (or acid anhydrides) to carboxylic acids.
 Similarly, acid chlorides (or anhydrides) can be converted to esters using alcohols.

6) hydrolysis of amides to carboxylic acids
acid-catalyzed:
base-promoted:
7) formation of amides
a) direct conversion of carboxylic acids into amides
This is a <i>very poor</i> method, and is almost never used. Similarly, the reaction between esters and amines is a poor method, and is almost never used.

Two better methods:
b) reaction of amines with acid chlorides (or anhydrides)
c) reaction of amines with carboxylic acids activated by DCC (dicyclohexylcarbodiimide) (27E)
This highly effective reaction is mild. It is used regularly for the formation of portion amide hands in
This highly effective reaction is mild. It is used regularly for the formation of peptide amide bonds in amino acid and protein synthesis.

strategic peptide coupling of α -amino acids:
Summary of interconversion of functional derivatives:
Other Reactions of Functional Derivatives
(some we have seen before in C203)
Reduction with Lithium Aluminum Hydride
a) carboxylic acids
b) acid chlorides

c) esters
Esters can also be reduced to alcohols using diisobutylaluminum hydride (DIBAL-H).
If the reduction is performed at low temperature (-78 °C), then aldehydes can be isolated directly.
d) amides
The product of reduction of amides with LiAlH₄ is usually an amine rather than an alcohol.
mechanisms:

Cham	201	carbox	dic	acide	Dak	_
	204	Carbux	VIIC	auius-	Dan	

e) nitriles
Nitriles may be reduced to 1° amines with LiAIH4 or to aldehydes with DIBAL-H.
Reactions of Organometallic Reagents (Grignard or Organolithium Reagents)
a) esters (C203)
• react to form 3° alcohols (if ester is formate, 2° alcohols)

b) nitriles

Nitriles react with these reagents to form ketones.