Chemistry 204: Enolate Anions and Enamines | | | • | | | | | | |---|-----|----------|----|-----|---|-----|---| | ĸ | rii | 1 | rn | 1// | ^ | 14/ | - | | u | ,,, | 71 | re | V I | ᆫ | vv | ٠ | | | | | | | | | | | aldehydes and ketones: nucleophilic addition | |---| | carboxylic acid derivatives | | | | Another important reaction of carbonyl compounds is α -substitution: | | | | | | Keto-enol tautomerism | | aldehydes and ketones exist in solution as equilibrium mixture of two isomeric forms: keto form and enol form two isomers are called tautomers | • this acid or base-catalyzed equililbrium is called tautomerism | mechanism (acid catalysis) | |--| | | | | | | | Normally, with simple aldehydes and ketones, the keto tautomer predominates at equilibrium: | | | | | | For β -diketones, the enol form contributes more to the keto-enol equilibrium and, in non-polar solvents may predominate. | | | | | | Although enols do occur as intermediates in certain organic reactions, we will concentrate on the use of enolate anions . | | Acidity of α -protons: Enolate Anion Formation | | How acidic are C-H bonds adjacent to a carbonyl or nitrile function? | | | | | | | Chem 204-enolate chemistry-Dake | |--|---------------------------------| Thus, enolate anions can be formed using appropriate bases: | This method for forming a solution of enolate anions is most importa | ant in organic chemistry! | | | | | | | | | | | If the C-H bond is adjacent to two C=O groups, the α -proton is considerably more acidic. | |---| | | | | | | | | | | | Reactivity of Enolate Anions | | As shown above, enolate anions have two sites that are nucleophilic—the oxygen atom and the $\alpha\mbox{-carbon}.$ | | | | | ## Alkylation of Enolate Ions - possibly most important reaction of enolate ions - forms carbon-carbon bonds - will discuss a number of important methods The Malonic Ester Synthesis and the Acetoacetic Ester Synthesis - \bullet alkylation, hydrolysis and decarboxylation of 1,3-diesters and β -ketoesters - general synthesis of structurally complex carboxylic acids and ketones general reaction (malonic ester synthesis): | The monoalkylated malonic ester can be alkylated a second time: | | |---|--| How does the decarboxylation reaction occur? | general reaction (acetoacetic ester synthesis) | | | general reaction (acctoacetic ester synthesis) | | | | | | | | | | | | The decarboxylation takes place via a mechanism identical with that for the decarboxylation of a malonic acid: | |---| | Summary | | Direct Alkylation of Ketones, Esters and Nitriles Ketones, esters and nitriles can be alkylated directly. In these cases, one must use a strong . | | Ketones, esters and nitriles can be alkylated directly. In these cases, one must use a strong , sterically hindered base to remove the α -proton. | strong: because these compounds are not very acidic hindered: to prevent addition of the base to the carbonyl or the C=N function A very useful base: lithium diisopropylamide (LDA) Because these reactions proceed through a S_N2 mechanism, only reactive electrophiles (1° alkyl halides) work well in these reactions. | Carbonyl condensation reactions | |---| | Carbonyl condensation reactions are processes that take place between two carbonyl compounds. | | | | | | Aldol condensation | | very important reaction involves enolate anion formation and carbonyl addition | | | | | | | | | | | | mechanism: | | | | | | | | | | | | | | | | | | If one attempts to carry out a "mixed" aldol condensation between two similar aldehydes, a complex mixture of products is formed. | | What happens when aldol condensations are attempted with ketones? Here the equilibrium favors the ketones, not the aldol product. | |---| | This condensation can be "forced" towards product by heating to cause dehydration and to remove water as it is formed. | | | | | | With certain highly electrophilic aldehydes, crossed aldol condensations are possible. | | | | Crossed aldol condensations are also possible when one of the partners is quite acidic and is readily transformed into an enolate anion, while the other partner self-condenses slowly. | |--| | | | | | | | The aldol condensation is an important method for preparing α,β unsaturated aldehydes and ketones. These products are stabilized by partial delocalization of the π electrons. | | | | | | | | Intramolecular aldol condensations of dicarbonyl compounds constitute a very important method for forming cyclic compounds. This is the major application of the aldol condensation. | | | | | | | The aldol condensation in molecule construction: | The Claisen condensation | |---| | • important reaction involving the condensation of an enolate derived from an ester with a neutral ester molecule. Somewhat analogous to the aldol condensation of aldehydes. | mechanism: | | | | | | | | | | | | | | | | | Mixed Claisen condensations are successful when one of the esters has no α -hydrogens. | One can also carry out a related condensation between a ketone and an ester. The pK _A of a ketone is lower than that of an ester. If an excess of ester is used, one can obtain primarily one product (a β -diketone). | |---| | | | | | Intramolecular Claisen condensations (Dieckmann condensations) are important reactions for the preparation of cyclic systems (particularly 5 and 6 membered rings). This is a major application of the Claisen condensation. |