More about pKa's and acid-base equilibria

CHEM 330 handout

In CHEM 330, we often deal with acid-base equilibria, e.g., in the context of deprotonation reactions (formation of enolates, etc.). The following questions may surface during such discussions:

Suppose that we treat a weak carbon acid, A–H (e.g., an enolizable carbonyl compound), with a base, B $^-$:

- (i) how can we estimate the equilibrium constant of the ensuing deprotonation reaction?
- (ii) how can we estimate the equilibrium concentrations of the various species present in solution?
- (iii) how can we estimate the ΔG for the deprotonation reaction?

This handout provides answers to the above.

Consider the equilibrium:

$$A-H + B^- \longrightarrow A^- + B-H$$

We can estimate the equilibrium constant, K_{eq} , for this process if we know the pKa's of A-H and B-H:

Substitution gives:

$$Keq = \frac{Ka_{AH}}{[H^+]} \cdot \frac{[H^+]}{Ka_{BH}} = \frac{Ka_{AH}}{Ka_{BH}}$$

$$\therefore pKeq = p\left\{\frac{Ka_{AH}}{Ka_{BH}}\right\} = pKa_{AH} - pKa_{BH}$$

Example:

Suppose that one treats ethyl acetate ("EtOAc"), pKa \approx 25, with NaOEt, pKa $_{\text{EtOH}} \approx$ 18. Deprotonation will be incomplete because EtO $^-$ is a weaker base than the enolate of EtOAc. For simplicity, suppose also that the initial concentrations of the two reactants are identical and equal to 1 M. The equilibrium constant for the process is roughly equal to:

$$\Delta pKa = 25-18 = 7 = p\{equilibrium constant, K_{eq}\}, so, K_{eq} \approx 10^{-7}$$

We can estimate the extent of deprotonation of EtOAc under these conditions from the expression of K_{eq} . For the process,

we have:

$$K_{eq} = \frac{[\bigcirc CH_2 - COOEt] [EtOH]}{[H - CH_2 - COOEt] [EtO]}$$

Because for each molecule of enolate that forms one also creates one molecule of EtOH, the solution concentrations of enolate and of EtOH will be essentially identical; furthermore, because the extent of deprotonation is small, the concentrations of EtOAc and of EtO— will not change much: they will be nearly equal to the initial value of 1M. The above expression may then be simplified (oversimplified?) as follows:

$$[$$
 \bigcirc CH_2 -COOEt $]$ $^2 \approx K_{eq}$ $;$ $[$ \bigcirc CH_2 -COOEt $] \approx \sqrt{K_{eq}} = 10^{-3.5} \approx 3 \times 10^{-4}$

meaning that approximately 0.03% (≈ 1 part in 3,000) of the starting EtOAc will be present as the enolate under these conditions.

In general, the square root of K_{eq} provides an estimate of the extent of deprotonation. As a guideline, meaningful reaction rates are achieved when this value is $> 10^{-6}$

The Gibbs equation relates equilibrium constants to ΔG 's:

$$\Delta G = -n RT \ln K_{eq}$$

where n = number of moles, R = gas constant (=1.98•10⁻³ kcal/°K mol)

Because changes in pKa are associated with ΔG 's, one may use ΔpKa 's to estimate whether a reaction step involving basic agents will be thermodynamically favorable or unfavorable:

A step that produces a weaker base at the expenses of a stronger base is thermodynamically favorable (because $\Delta G < 0$)

A step that produces a stronger base at the expenses of a weaker base is thermodynamically unfavorable (because $\Delta G > 0$)

Example:

Determine whether the deprotonation of ethyl acetate with the anion of diisopropylamine at 25°C is thermodynamically favorable or unfavorable and estimate the ΔG associated with the reaction.

$$(i\text{-Pr})_2 \text{N}^- + \text{H-CH}_2 \text{COOEt} \longrightarrow (i\text{-Pr})_2 \text{N-H} + \text{-CH}_2 \text{COOEt}$$

$$\text{pKa} \approx 25 \qquad \text{pKa} \approx 35$$

$$\text{p Keq} = 25 - 35 = -10 \qquad \text{Keq} \approx 10^{10} >> 1 \qquad \text{the reaction}$$

$$\text{is favorable}$$

$$\text{For 1 mole at } 25^\circ \text{C} \ (= 298 \, ^\circ \text{K}):$$

$$\Delta G = -n \, \text{RT In K}_{\text{eq}} = -1.98 \cdot 10^{-3} \cdot 298 \cdot \text{In } 10^{10} = -13.6 \, \text{kcal / mol}$$

$$\Delta G < 0 \qquad \text{the reaction}$$

$$\text{is favorable}$$