CHEM 330

Final Exam December 19, 2005

Your name:			

This a closed-notes, closed-book exam

The use of molecular models is allowed

This exam contains 12 pages

Time: 2h 30 min

- 1. _____/24
- 2. _____/24
- 3. _____/ 22
- 4. _____/40
- 5. _____/40
- 6. _____/40
- 7. _____/ 50
- 8. _____/60

TOTAL
$$/300 = /100$$

This exam counts for 45% of your CHEM 330 final grade

1. (24 pts.) Indicate the approximate pKa's for the ionization of the protons in boldface in the following molecules (write your answer in the box):

	0			
	OEt	H- H	, N.H	EtO- H
approx. pKa =				
	<u>о</u> н	O H	O O O OEt	∕
approx. pKa =				

2. (24 pts) Check the appropriate box to indicate whether the following transformations involve overall oxidation, reduction, or neither, of the starting compound:

a.	OTMS	b. \bigcirc
	oxid. redn. neith.	oxid. redn. neith.
C.	\bigcirc OTMS	d. OH
	oxid. redn. neith.	oxid. redn. neith.
е.	OH	f. \downarrow \rightarrow \downarrow
	oxid. redn. neith.	oxid. redn. neith.
g.	$\stackrel{O}{\not\downarrow}_{Ph} \longrightarrow \stackrel{O}{\not\downarrow}_{OPh}$	h. $2 \longrightarrow 0$ O O O O O O O O O O O O O O O O O O
	oxid. redn. neith.	oxid. redn. neith.

3. (22 pts.) Write detailed mechanisms for the following known reactions:

a.
$$\frac{\text{MeOOC}}{\text{Et}_3\text{N}}$$
 $\frac{\text{COOMe}}{\text{CN}}$

4.	(40 pts.) Write a chemical equation to show an example of the following reaction encountered in class (do not write mechanisms – just the reactions):	ns
	Prasad reduction:	
	Cannizzaro reaction:	
	Robinson annulation:	
	Miller silyl enol ether synthesis:	
	wither stryr enor edier synthesis.	

- 5. (40 pts) Check the appropriate box to indicate whether the following statements are true or false.
 - a. The copper atom undergoes reductive elimination in the following reaction:

uuc	iaisc		

$$Me_2CuLi + 2 HBr \longrightarrow 2 Me-H + LiBr + Cu-Br$$

b. The following transformation may be induced by the use of Me_2CuLi :

c. Treatment of **A** with metallic Na, followed by aqueous workup, will result in formation of **B**:

true	false

COOEt	metallic Na,	6 0
COOEt	then aq. wrkp.	OH
Δ		В

d. The reaction shown below will give compound **C** as the major product:

e. The reaction shown below is a reverse Diels-Alder:

true false

f.	Treatment of D with NaBH(OAc) ₃ followed by aqueous
	workup yields E as the major product:

g. Treatment of **F** with catalytic NaOMe will cause isomerization to **G**:

h. The following sequence represents a good method for the preparation of **H**:

i. Substrate and reagent in the reaction shown below are stereochemically mismatched:

j. Compound I shown below is the product of an *endo*-Diels-Alder reaction:

6. (40 pts.) Predict the structure of the major product expected from the following reactions. Note: It is not necessary to draw mechanisms.

b.
$$\frac{1. \text{ CH}_2 = \text{CHCu}(\text{PBu}_3)_2}{2. \text{ Bu-I, then aq. wrkp.}}$$

f. Ph
$$\begin{array}{c}
1. \text{ Cy}_2\text{BCI} \\
\text{Et}_3\text{N} \\
\hline
2. \text{ Ph} CHO \\
\hline
\text{OMe}
\end{array}$$

7. (50 pts.) Indicate a method to accomplish the transformations shown below. In each case, a multistep sequence (= not just one reaction, but several) may be necessary. Assume the availability of all required reagents (e.g, bases, alkyl halides, etc.). Present your answer as a flowchart. Note: It is not necessary to draw mechanisms.

8. (60 pts) Propose a method to achieve the enantioselective synthesis of the molecules shown below. Be careful about protecting groups and relative/absolute configurations of stereocenters. Assume the availability of all required reagents, chiral auxiliaries, etc.