A molecular crystal with tunable disorder: Controlled localization of rotational and spin excitons

Sergey Alyabyshev
Chris Hemming
Felipe Herrera
Jie Cui
Marina Litinskaya
Jesus Perez Rios
Ping Xiang

Zhiying Li, now at UBC Physics
Timur Tscherbul, now at Harvard University

Roman Krems
University of British Columbia

Funding:

[NSERC CRSNG logo]
[UBC logo]
[Les Fiducies Killam Trusts]
[Peter Wall Institute for Advanced Studies]
[Canadian Centre for Research on Ultra-Cold Systems]
Quantum Simulation

Design *simple controllable* systems with some of the same properties as complex quantum systems, such as solid-state crystals.
Quantum Simulation

Design simple controllable systems with some of the same properties as complex quantum systems, such as solid-state crystals

This talk

I. Ultracold molecules on an optical lattice as a crystal with tunable exciton–impurity interactions

II. Ultracold molecules on an optical lattice as a crystal with tunable magnetic properties
Frenkel exciton

\[\phi_n = |00\rangle_1 |00\rangle_2 \ldots |10\rangle_n |00\rangle_{n+1} \ldots |00\rangle_N \]

\[\psi = \sum_n C_n \phi_n \]
Frenkel exciton

\[\phi_n = |00\rangle_1 |00\rangle_2 \ldots |10\rangle_n |00\rangle_{n+1} \ldots |00\rangle_N \]

\[\psi_k = \sum_n \frac{e^{ik \cdot r_n}}{\sqrt{N}} \phi_n \]
Dispersion Curves

\[E(k) \text{ (in units of } 10^{-6} B) \]

\[m_* < 0 \]

\[|1,-1\rangle \rightarrow |1,0\rangle \rightarrow |1,1\rangle \rightarrow |0,0\rangle \]

\[|1,-1\rangle \rightarrow |1,0\rangle \rightarrow |1,1\rangle \rightarrow |\alpha\rangle, |\beta\rangle \]

\[|0,0\rangle \rightarrow |\gamma\rangle \]
Negative effective mass => negative refraction of EM field
$E(k)$ (kHz)

$E_{\perp x}$

$E_{|| x}$

α, β

γ
Impurities

Pure Exciton Hamiltonian:

\[
H = \left(\sum_{n} E_0 B_n^\dagger B_n + \sum_{n} J_{mn} B_m^\dagger B_n \right)
\]
Impurities

One impurity:

\[
H = \sum_{n \neq 0} E_0 B_n^\dagger B_n + E_{imp} B_{n=0}^\dagger B_{n=0} + \sum_n J_{mn} B_m^\dagger B_n
\]

Scatterer with the strength = difference in transition energies:

\[
H = \left(\sum_n E_0 B_n^\dagger B_n + \sum_n J_{mn} B_m^\dagger B_n \right) + (E_{imp} - E_0) B_{n=0}^\dagger B_{n=0}
\]

Breaks translational symmetry \(\Rightarrow\) Mixes states with different \(k\)

\[
H = \sum_k E(k) B^\dagger(k) B(k) + \frac{V_0}{N} \sum_{k,q} B^\dagger(k) B(q)
\]
Tunable impurities

\[\Delta E_{eg} \text{ (x10^4 MHz)} \]

\[\sigma_{2D} \text{ (Å)} \]

\[E \text{ (kV/cm)} \]

\[E \text{ (mV/cm)} \]

- **CsF**
- **LiCs**
- **LiRb**

\[k = 10^{-8} \text{ Å}^{-1} \]
\[k = 10^{-6} \text{ Å}^{-1} \]
\[k = 10^{-5} \text{ Å}^{-1} \]
Exciton – impurity Hamiltonian matrix

\[\langle \hat{H}_0 \rangle_{q,k} = E(k) \delta_{k,q}, \]

\[\langle \hat{W} \rangle_{q,k} = \frac{2\Delta J(a)}{N_{\text{mol}}} (\cos q \cdot a + \cos k \cdot a) \sum_{i_n=1}^{N_i} e^{i(q-k) \cdot i_n} \]

Off-diagonal disorder

Diagonal disorder

\[\langle \hat{V} \rangle_{q,k} = \frac{V_0}{N_{\text{mol}}} \sum_{i_n=1}^{N_i} e^{i(q-k) \cdot i_n} \]
No diagonal disorder

Strong diagonal disorder

Diagonal disorder \sim off-diagonal disorder
\[|\Psi(x)|^2 \left(\frac{1}{N_{\text{mol}}} \right) \]

- **No diagonal disorder**
- **Diagonal disorder \sim off-diagonal disorder**
- **Large diagonal disorder**
\[|\Psi(x)|^2 \]

\[f(t) \]

\[t (\mu s) \]

\[|C(k)|^2 \]

\[x (\text{a}) \]

\[ka \]
Applications

• Time-domain quantum simulation of localization of quantum particles:
 timescale of Anderson localization
dynamics of exciton localization as a function of effective mass, exciton bandwidth, and exciton-impurity interaction strength
effect of disorder correlations on localization and delocalization

• Negative refraction of MW fields

• Controlled preparation of many-body entangled states of molecules

• Effects of dimensionality and finite size on energy transfer in crystals
Energy diagram of a $^2\Sigma$ diatomic molecule

How do electric fields affect spin relaxation?

- Induce couplings between the rotational levels ($N = 1$)
- Increase the energy gap between the rotational levels

Enhancement of spin relaxation

- **First-order Stark effect**

$^2\Sigma$ molecules

Energy diagram of a $^2\Sigma$ diatomic molecule
Energy diagram of a $^2\Sigma$ diatomic molecule

$^2\Sigma$ molecules

ΔE

Spin-orbit interaction

Interaction potential

J
$^2 \Sigma$ molecules

Energy diagram of a $^2 \Sigma$ diatomic molecule
Frenkel exciton

\[\phi_n = |00\rangle_1|00\rangle_2 \ldots |10\rangle_n|00\rangle_{n+1} \ldots |00\rangle_N \]

\[\psi_k = \sum_n \frac{e^{ik \cdot r_n}}{\sqrt{N}} \phi_n \]
Frenkel exciton

\[\phi_n = |00\rangle_1 |00\rangle_2 \ldots |10\rangle_n |00\rangle_{n+1} \ldots |00\rangle_N \]

\[\psi_k = \sum_n e^{ik \cdot r_n} \frac{1}{\sqrt{N}} \phi_n \]

\[\Psi = \frac{1}{\sqrt{N_{\text{mol}}}} \sum_i C_i \Phi_i^S \]

\[\Phi_i^S = |M_S = 1/2\rangle_{r_i} \prod_{j \neq i} |M_S = -1/2\rangle_{r_j}. \]
Frenkel exciton

\[\phi_n = |00\rangle_1 |00\rangle_2 \ldots |10\rangle_n |00\rangle_{n+1} \ldots |00\rangle_N \]

\[\psi_k = \sum_n \frac{e^{ik \cdot r_n}}{\sqrt{N}} \phi_n \]

\[\Psi = \frac{1}{\sqrt{N_{\text{mol}}}} \sum_i C_i \Phi^S_i \]

\[\Phi^S_i = |M_S = 1/2\rangle_{r_i} \prod_{j \neq i} |M_S = -1/2\rangle_{r_j} \]

\[\alpha |\uparrow\rangle |\downarrow\rangle + \beta |\downarrow\rangle |\uparrow\rangle \]
Applications

Crystal with tunable impurities:

• Time-domain quantum simulation of localization of quantum particles:

 timescale of Anderson localization
 dynamics of exciton localization as a function of effective mass, exciton bandwidth, and exciton-impurity interaction strength
 effect of disorder correlations on localization and delocalization

• Negative refraction of MW fields

• Controlled preparation of many-body entangled states of molecules

• Effects of dimensionality and finite size on energy transfer in crystals

Optical lattice of magnetic molecules:

• Crystal with tunable magnetic properties, tunable spin waves

• Preparation of many-body entangled states of spin up-down pairs

• ???