External field control of molecular collisions
Principles of the Quantum Control of Molecular Processes

MOSHE SHAPIRO
PAUL BRUMER
“Experimental and theoretical studies of the Coherent Control of unimolecular processes have seen spectacular growth over the last two decades. By contrast, Coherent Control of collisional processes remains a significant challenge...”

Paul Brumer, DAMOP 2007, Bulletin of the APS
Controlled dynamics

Coherent control (Shapiro, ...)

External field control

Controlled chemistry

Notes:
External electric or magnetic fields may

- Close or open reaction channels
- Break the spherical symmetry of the problem
- Mitigate the role of centrifugal barriers in the reaction
- Induce Feshbach resonances that enhance reactivity
- Suppress or enhance the role of spin-orbit interactions
- Align or orient molecules
- Induce anisotropic interactions
- Confinе translational motion in lower dimensions

and thereby allow for control of molecular collisions
External electric or magnetic fields may

- Close or open reaction channels
- Break the spherical symmetry of the problem
- Mitigate the role of centrifugal barriers in the reaction
- Induce Feshbach resonances that enhance reactivity
- Suppress or enhance the role of spin-orbit interactions
- Align or orient molecules
- Induce anisotropic interactions
- Confine translational motion in lower dimensions

and thereby allow for control of molecular collisions

works at low temperatures!
Temperature scale (Kelvin)
Temperature scale (Kelvin)

cold
Temperature scale (Kelvin)

- ultra-cold
- cold
Temperature scale (Kelvin)
Temperature scale (Kelvin)

- ultra-cold
- cold
- warm
- hot
Temperature scale (Kelvin)

- ultra-cold
- cold
- warm
- hot

Laser cooling
Buffer-gas cooling
Stark deceleration of beams
Mechanical slowing
Beam collision
Temperature scale (Kelvin)

- Ultra-cold
 - Evaporative cooling
 - Laser cooling
 - Buffer-gas cooling
 - Stark deceleration of beams
 - Mechanical slowing
 - Beam collision
- Cold
- Warm
- Hot
Evaporative Cooling

More delicate methods: evaporative cooling
Experimental confirmation - 1995
E. A. Cornell, C. E Wieman, W. Ketterle

Ultracold gas of Rb atoms just above the transition temperature $T = 200$ nanoKelvin

Ultracold gas of Rb atoms at $T \sim 0.0000002$ Kelvin
Trap loss...
How do electric fields affect spin relaxation?

- Induce couplings between the rotational levels ($\Delta N = 1$)
- Increase the energy gap between the rotational levels

Controlling Electronic Spin Relaxation of Cold Molecules with Electric Fields

T. V. Tscherebul and R. V. Krems

Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada

(Received 3 June 2006; published 22 August 2006)

Spin relaxation is suppressed
Enhancement of spin relaxation

- First-order Stark effect

Enhancement of spin relaxation (a 3D view)
Spin-changing reactions

Na(\(^2S\)) + CaH(\(^2\Sigma\)) \rightarrow NaH + Ca

Notes:
Li + HF \rightarrow LiF + H reaction

Reaction cross section (Å^2)

Collision energy (K)

Calculation by T. Tscherbul
Collisions of molecules in a microwave cavity

Molecular Hamiltonian: \(H_{\text{mol}} = B N^2 \)

Field Hamiltonian: \(H_f = \hbar \omega (a a^\dagger - \bar{n}) \)

Molecule - Field Hamiltonian: \(H_{\text{mol},f} = -\mu \sqrt{\frac{\hbar \omega}{2 \epsilon_0 V}} \cos \theta \left(a + a^\dagger \right) \)

Basis set: \(|NM_N\rangle|n\rangle\)

The matrix elements of the molecule - field Hamiltonian:

\[
\langle n|\langle NM_N|H_{\text{mol},f}|N'M_N'\rangle|n'\rangle \sim \langle NM_N|\cos \theta|N'M_N'\rangle \times \\
\times \left(\delta_{n,n'+1} + \delta_{n,n'-1} \right)
\]

\[
\langle NM_N|\cos \theta|N'M_N'\rangle \sim \delta_{M_N,M'_N} \left(\delta_{N,N'+1} + \delta_{N,N'-1} \right)
\]
Energy levels of a diatomic molecule in a microwave field
Change of a shape resonance in the presence of microwave radiation

$\omega = 1.9 \text{ B}; \mu \varepsilon_0 = 0.5 \text{ B}$

Cross section for elastic scattering (Å^2)

Collision energy (cm^{-1})
Electric-field-induced resonances in ultracold mixtures of alkali metal atoms
Feshbach resonance
s-wave elastic scattering

Cross section (Å²)

Magnetic field (Gauss)
s-wave elastic scattering

p-wave elastic scattering

Magnetic field (Gauss)

Cross section (Å^2)
s-wave elastic scattering

p-wave elastic scattering

s → p transition at E=30 kV/cm
Cross section (Å^2) vs. Magnetic field (Gauss)

- Red line: No electric field
- Blue dashed line: Zero electric field

Zero electric field
Zero electric field

100 kV/cm

Cross section (Å²)

Magnetic field (Gauss)
Collisions in confined geometries
Quantum Gases in Confined Geometries

Reactions at ultralow temperatures

A + BC → AB + C

Balakrishnan et al., PRL 80, 3224 (1998)

Notes:
Reactions at ultralow temperatures

A + BC → AB + C

Balakrishnan et al., PRL 80, 3224 (1998)

Notes:
Reactions at ultralow temperatures

A + BC → AB + C

Balakrishnan et al., PRL 80, 3224 (1998)

Notes:
Reactions at ultralow temperatures

\[A + BC \rightarrow AB + C \]

Balakrishnan et al., PRL 80, 3224 (1998)

Notes:
Reactions at ultralow temperatures

Notes:
Wigner’s laws:
elastic cross section ~ constant
reaction cross section ~ 1/velocity

Notes:
Reactions at ultralow temperatures

Wigner’s laws:

- elastic cross section ~ constant
- reaction cross section ~ 1/velocity

rate ~ velocity \times cross section
elastic rate ~ 0
reaction rate ~ constant

Notes:
Threshold laws for collisions in 2D

In 3D, we have Wigner’s threshold laws for elastic scattering:

\[\text{collision cross section} \sim v^{2l+2l'} \]

In 2D, there is no \(l \). The Hamiltonian is

\[
H = -\frac{1}{2\mu \rho} \frac{d}{d\rho} \rho \frac{d}{d\rho} + \frac{l_z^2}{2\mu \rho^2} + H_{\text{as}} + V(\rho),
\]

The role of \(l \) is played by \(m \), the projection quantum number.

How are the Wigner’s threshold laws modified, if we confine the system in 2D?
Differential scattering cross section (a.u.)

\[
\hat{H} = -\frac{1}{2\mu} \left[\frac{1}{R} \frac{\partial}{\partial R} R \frac{\partial}{\partial R} + \frac{1}{R^2} \frac{\partial^2}{\partial^2 \varphi} \right] + \hat{V}(R) + \hat{V}_E(R) + \hat{V}_B + \hat{V}_{hf}
\]

\[
\hat{H} \psi = E \psi \quad \psi = \frac{\phi}{R^{\frac{1}{2}}}
\]

\[
\frac{1}{R} \frac{\partial}{\partial R} R \frac{\partial}{\partial R} \psi = \frac{1}{R} \frac{\partial}{\partial R} R \frac{\partial}{\partial R} \left(\frac{\phi}{R^{\frac{1}{2}}} \right) = R^{-\frac{1}{2}} \frac{\partial^2 \phi}{\partial^2 R} + \frac{1}{4} R^{-\frac{5}{2}} \phi
\]

\[
\psi = \frac{1}{R^{\frac{1}{2}}} \sum_{\alpha} \sum_{m} F_{\alpha m}(R) e^{im\varphi} |\alpha\rangle
\]
Let’s look at low-energy scattering:

In 3D, the Schrödinger’s equation is

\[
-\frac{1}{2\mu R^2} \frac{d}{dR} R^2 \frac{d}{dR} + \frac{l(l + 1)}{2\mu R^2} - 2\mu V(R) \psi(k, R) = -k^2 \psi(k, R)
\]

Consider first the solution to this equation with \(V = 0 \) and \(k = 0 \):

\[
-\frac{1}{2\mu R^2} \frac{d}{dR} R^2 \frac{d}{dR} \psi(k, R) = 0
\]

Let’s look for the solution in the form \(\psi(R, k = 0) = \text{const} R^s \)

The derivative:

\[
\frac{1}{2\mu R^2} \frac{d}{dR} R^2 \frac{d}{dR} R^s = s(s + 1) R^s
\]

Hence, \(s(s + 1) = l(l + 1) \) or \(s = l \) and \(s = -(l + 1) \).
A general solution at $k = 0$ is therefore

$$\psi(k = 0, R) = A_1 R^l + A_2 R^{-(l+1)}$$

Now, for $k \neq 0$, we have a Bessel equation and the general solution

$$\psi(k, R) = A j_l(kR) + B \eta_l(kR)$$

which can be re-written at small k as

$$\psi(k, R) = (kR)^l + \tan \delta_l(kR)^{-(l+1)}$$

For smooth and continuous matching to $k = 0$, we must require

$$\tan \delta_l \sim k^{2l+1}$$

which gives after some manipulation:

elastic scattering cross section $\sim k^{4l}$
Repeating this derivation for 2D, we get

\[
\text{cross section} \sim \frac{1}{k \ln^2 k}, \quad \text{when } m = 0
\]

Using the formalism of Wigner, it is also possible to get the off-diagonal cross sections:

\[
\text{cross section for } m = 0 \rightarrow m' \text{ transitions } \sim k^{2|m| - 1} \frac{1}{\ln^2 k}
\]

and

\[
\text{cross section for } m > 0 \rightarrow m' > 0 \text{ transitions } \sim k^{2|m| + 2|m'| - 1}
\]
Threshold collision laws

<table>
<thead>
<tr>
<th></th>
<th>3D</th>
<th>2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic collisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-wave</td>
<td>$\sigma = \text{const}$</td>
<td>$\sigma \propto \frac{1}{v \ln^2 v}$</td>
</tr>
<tr>
<td>s-wave to non-s-wave</td>
<td>$\sigma \propto v^{2l'}$</td>
<td>$\sigma \propto v^2</td>
</tr>
<tr>
<td>non-s-wave to non-s-wave</td>
<td>$\sigma \propto v^{2l+2l'}$</td>
<td>$\sigma \propto v^2</td>
</tr>
<tr>
<td>Inelastic collisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-wave relaxation</td>
<td>$\sigma \propto 1/v$</td>
<td>$\sigma \propto \frac{1}{v \ln^2 v}$</td>
</tr>
<tr>
<td>non-s-wave relaxation</td>
<td>$\sigma \propto v^{2l-1}$</td>
<td>$\sigma \propto v^2</td>
</tr>
</tbody>
</table>

Why is this interesting?
Suppressed collisional spin relaxation

Enhanced collisional spin relaxation
Challenges for Theory of Cold Molecules

• Quantitative predictions of interaction properties at ultracold Ts
 → difficult but not impossible
 → must involve analysis of experiments
 → must involve rigorous scattering calculations

• Scattering theory for molecular collisions at cold (∼ 1 K) Ts
 → must include external fields
 → uncoupled representation = huge basis sets
 → extended propagation grids

• Scattering theory for reactions of highly excited molecules
 → reactions involving alkali metal atoms and diatoms
 → must include external fields and non-adiabatic couplings
 → similar in difficulty to collision induced dissociation
References

R. V. Krems, PRL 93, 013201 (2004).

Reviews