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Abstract 

The exact asymptotic behavior and the uniqueness of the local kinetic energy are discussed. The physical significance of 
the local kinetic energy is demonstrated, and a few popular models of the local kinetic energy are surveyed and compared. 

1. Introduction 

In the density-Functional theory (DFr)  [1-4], the 
total ground electronic state energy of an atom or a 
molecule is completely determined by its electron 
density p(r) .  The energy functional E[ p] is ex- 
pressed as 

e[ o] = r[ p] + v.o[ p] + voo[ p], (1) 
where T[ p], V=[ p], and Vee[ p] are the kinetic en- 
ergy, the nuclear-electron attraction, and the elec- 
tron-electron repulsion functionals, respectively. 
Consequently, the main task of the DFT is to search 
and to construct these functionals exactly or approxi- 
mately [3,4]. It has recently been recognized [4] that 
kinetic energy functional T[ p] is the most difficult 
component in the total energy functional E[ p] to be 
represented approximately. A great deal of effort has 
been made to construct T[ p] by various approaches 
[3-17]. T[ p] is usually represented in terms of the 
kinetic energy density (KED) and its Green-theorem 
equivalences. Furthermore, it is commonly believed 
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that the KED could be defined by different formulas 
in which extra zero-integral terms could be added 
freely [14-17]. 

In this Letter, we will define the single-electron 
Schr'ddinger local kinetic energy (SESLKE) accord- 
ing to the reduced Schr~Sdinger equation, then discuss 
the exact asymptotic behavior and the uniqueness of 
the SESLKE, and demonstrate that there is no arbi- 
trary term can be freely chosen in the definition of 
the SESLKE. Finally, a few popular, competitive 
models of the single-electron local kinetic energy 
(SELKE) are surveyed and compared. Atomic units 
are used throughout this Letter, and we focus on the 
ground state of an N-electron chemical system, al- 
beit that similar conclusions hold for excited states 
as well. 

2. The reduced Schr~linger equation 

Conventionally [3,4], the nonrelativistic electronic 
Hamiltonian /~N of an N-electron chemical system 
is approximated by 

~N = ~,, + ~ = ~,, + ~2 + ~2, (2) 
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where the kinetic energy, the nuclear-electron attrac- 
tion, and the electron-electron repulsion operators 
are written as 

N N 

= E 
i i 

N 

Qg -- E V.e(i), 
i 

N 

1,3ee u =  ]~ r~  l . (3) 
i< j  

The nonrelativistic, time-independent, electronic 
Schr~dinger equation for state IV N > is 

/~N[~N > = ENIqtN>. (4) 

Multiplying Eq. (4) from the left by <~Yl and 
integrating over the spin and space coordinates of p 
electrons, one arrives at the (N - p)th-order reduced 
SchrSdinger equation 

(attN[I]N]aItN)t , = EN<aItNlaI~N>t,, 

( p = 0 , 1  . . . . .  N ) .  (5) 

The local ( N -  p)th-order Schrbdinger total kinetic 
energy and potential energy satisfy the energy con- 
servation 

<vltNIfNlattN>p <rltNI17NIaltN>p 
+ = E N . (6) 

<1[r N lalr N > p < ~ N l~f N > p 

Specifically for the sake of this Letter, we only need 
the first-order reduced Schr~Sdinger equation 

(aI tNITNlaI tN>N-1  <al tNIvNIal tN>N-1 
+ = E  N . 

< rlt N lalt N > N_ | <lIt N Ill~ N > N _ 1 

(7) 

Here, we define the SESLKE ks(r  i) as 

= , ( 8 )  ks( ri) <rttNIrltN>N--1 

where the integration is done over the remaining 
( N - 1 )  electrons except for the ith electron, and 
ks(r) relates to the total kinetic energy T[ p] via 

T[ p] = f ks( r ) p (  r ) d r .  (9) 

3. Uniqueness and asymptotic behavior of ks(r) 

The correct asymptotic behavior and the unique- 
ness of ks(r) is shown by the following two theo- 
rems: 

Theorem 1: For any electronic state of an atom or 
a molecule, its SESLKE is unique. 

Proof: In Eq. (2), let us separate Electron 1 from 
the remaining (N - 1) electrons, 

HN(1,2  . . . . .  N)  

= H N - ' ( 2  . . . . .  N)  +~', + O.e(1 ) +Dee(a), 

N 

Oee(1) = Y'~ r ~ ' ,  (10) 
i > 1  

where /~N- I has a complete eigensystem 

~N- t l~ iN- ,  ) = E l - l  [~/N-,>. (1 1) 

After defining a complete set of the Dyson orbitals 
{f~} [18] for the ground-state IV s > 

f, = <Wi N- ' I~N>N-, ,  (12) 

we obtain the Carlson-Keller expansion [19] 

I~N(1,2  . . . . .  N)>-= ]~ fi(1)[~iN- ' (2 . . . . .  U)> ,  
i = l  

(13) 

and the one-electron density 

p ( r )  
= (attNlaltN>N--I = E [(altiN-llattN>N-ll 2 

i ~ l  

oo 

= E If/(r)l  2. (14) 
i = 1  

Then, Eq. (7) can be simplified as follows: 

E:," [9  + + ,] 
i 

 ILI 2 
i 

~ E  N- ' l f f  
+ i = E  N" 

 lf, I 2 
i 

(15) 
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Consequently, due to the Katriel-Davidson equation 
[20] for the Dyson orbitals 

+ = - 4  f ,  

I, = E f t - '  - E N , (16) 

the SESLKE 

Ey/* 
ks( r  ) - i Eif/[2 (17) 

i 

must be unique in order to keep the energy conserva- 
tion pointwise in Eq. (15) [QED]. 

Theorem 2: For the ground electronic state of an 
atom or a molecule, the asymptotic limit of its 
SESLKE is the negative of its first ionization poten- 
tial. 

Proof:  It has been rigorously demonstrated by 
Katriel and Davidson [20] that for an N-electron 
atomic or molecular system, the asymptotic form of 
the ground electronic state wavefunction is 

lim IqtU(r, 2 . . . . .  N ) )  
r .--+ ~c 

= ~ [ ~ N - ' ( 2  . . . . .  N ) ) r  t3exp(-  2 ~ r ) ,  

( Z - N + I )  
/3= 2 ~  1, (18) 

where A, I and Z are the normalization factor, the 
first ionization potential and the total nuclear charge, 
respectively; and Iq* u- t) is the ground state wave- 
function of the remaining ( N -  1) electrons. Insert- 
ing Eq. (18) into Eq. (8) and finishing the integration 
over the ( N -  1) remaining electrons, one then has 

t ' [ r ~ e x p ( -  2 ~ r ) ]  
lim ks( r  ) = lira 

r ~  r - + O ~  r/3 exp(-- 2 ~ / )  

= - 1 .  [QED] (19) 

Conceptually, when one electron is moving far 
away from the rest of the particles in an atomic or 
molecular system, the local energy of the asymptotic 
electron, E e, is given by 

Ee( r --+ a¢) = E iv - E N- l = - I ,  (20) 

where E u-  1 is the ground state energy of the (N - 
1)-electron system. The local effective potential en- 
ergy of the asymptotic electron will be zero, and its 

Schr&linger local kinetic energy will be - I .  On the 
other hand, Eq. (19) indicates negative kinetic en- 
ergy, which is consistent with our previous under- 
standing [21-23]: in general, for a one-dimensional 
case, once the asymptotic electron moves beyond the 
classical turning point, its SchrSdinger kinetic energy 
will be always negative. 

It should be emphasized that the asymptotic be- 
havior does not guarantee the uniqueness of ks(r), 
which will be discussed in detail in later sections. 
Mathematically speaking, the asymptotic behavior is 
just the necessary condition the correct ks(r) should 
possess. Of course, the sufficient condition requires 
that various different f o r m s  of ks(r) be numerical ly  
identical to Eq. (8). 

4. Kinetic energy density 

The SELKE k ( r )  relates with the KED t(r: [ p]) 
via the following definition [3-17] 

t ( r ; [  p])  = k ( r ) p ( r ) .  (21) 

From the definitions of the kinetic energy operator 
in Eq. (3) and the SESLKE ks(r) in Eq. (8), it is 
easy to work out the expression for the SchrSdinger 
K E D  ts(r; [ p]) [3,4] 

= - - t V r 2 " y ( r , r ' ) l r , = r  (22) ts(r; [ P])  ~- 

where y( r ,  r ') is the first-order reduced density 
matrix. Directly employing Green's theorem yields 
another popular expression for t(r; [ p]) [3,4,17] 

= ' V r- V,, y ( r ,  r ' ) lv=r.  (23) t t ( r ; [ p ] )  

Due to the following identity 

f V 2 p ( r )  dr  = 0, (24) 

one can practically attach an arbitrary term to either 
of the above two definitions [3,4]. For instance, the 
following KED expression is often employed [15,16] 

t 2 ( r ; [ p ] ) = t l ( r : [ p ] ) - A V 2 p ( r ) ,  (25) 

where A can have any value. It has been shown [4] 
that ts(r; [ p]) relates with tl(r: [ p]) via 

t s ( r : [ p ] ) = t l ( r ; [ p ] ) - ¼ V 2 p ( r ) ,  (26) 

' [14], and although other A values, including 0 [17], 
so on [15,16], have been suggested as well. For- 
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mally, any interpolation between ts(r; [p])  and 
t2(r; [ p]) 

t3(r; [ " l )  = °ets (r: [ o l )  + (1 - or) t2(r; [ p])  
(27) 

can be used as the KED as was done often in the 
literature, and t3(r; [ p]) will deliver the same total 
kinetic energy and kinetic energy density functional 
derivative BT/Bp for a given, fixed ground state 
density p(r). 

5. D i s c u s s i o n  

Equivalently, utilizing the asymptotic forms of the 
first-order reduced density matrix and the ground 
state density [20] 

lim 7 ( r , r ' )  = ~ .  f '~r') , 
r, rt---~o~ 

lim p ( r )  = a t  2~exp[-2 2 ~ r ] ,  (28) 
r...~ o~ 

with a few manipulations, we obtain the following 
asymptotic equations for k(r) derived from the cor- 
responding formulas of the KED t(r;[ p]) in Eqs. 
(22)-(27): 

ts(r;[P]) 
lim ks( r  ) = lim = - I ,  

r--+oo r "-*°° p(r) 

tl(r;[.]) 
lira k l ( r )  = l im = I ,  

r - - + ~  r - - * =  1 1 9 ( r )  

t2( r ; [  p])  
lim k2(v ) = lim = (1 - 8A) 1, 

r - t =  r - - t =  p(r) 

(29) 

(30) 

(31) 

t3(r;lp]) 
lim k3(r ) = lira 

r - + =  , - + •  p( r) 
= [ 2 ( 1  - ¢ 1 ) ( 1  - 4 A )  - 11 #.  ( 3 2 )  

From Eq. (19), in order for Eq. (32) to yield the sole 
value -1 ,  we have 

lim k3(r ) = [2(1 - a ) ( 1  - 4A) - 1] I =  - 1 ,  
r.... o~ 

t~=  1,  A = 1 / 4 .  ( 3 3 )  

Hence, only Eq. (22) and its identity, Eq. (26), are 
the correct definitions of ts(r; [ p]). Furthermore, this 

result vividly exemplifies that although Green's the- 
orem provides the same integral, the physical mean- 
ing of the integrands cannot always be maintained 
consistently throughout the integration. In the follow- 
ing, further detailed discussions on the physical 
meaning of various t(r: [ p]) will be provided in 
terms of Hermitian operators. 

To illustrate the physical meaning of different 
formulas of the KED t(r; [ p]) more clearly, we may 
rely on their corresponding Hermitian operators. 
For example, the Hermitian operator defined for 
ts(r: [ p]) in Eq. (22) is 

N 

E 
i ~ l  

1 
~ ( r ; [  p])  = ~ - [ 6 ( r , - r ) ( / 3 2 / 2 m )  

+(/3~/2m)8(G-r)] ,  (34) 

where m is the electron mass, and /3 i is the normal 
momentum operator 

/3/= - ihVi .  (35) 

A few simple manipulations can readily show the 
equivalence between this new definition 

N 

ts(r;[p])= Y'. tis(r:[pl), 
i = l  

t~ (r; [ p])  = (a/t N(1,2 . . . . .  N) I~  (r; [ ol) 
×lqtU(1,2 . . . . .  N ) ) ,  (36) 

and Eq. (22). Similarly, the Hermitian operator de- 
fined for tl(r; [ p]) in Eq. (23) is 

N 

D(r;[ol)= E 
i = l  

(r;[ ol)= 
(37) 

A general Hermitian operator defined for t3(r; [ p]) 
in Eq. (27) will be a proper interpolation between the 
above two definitions. Based on the physical inter- 
pretations of the Hermitian operators, Eq. (34) sug- 
gests an ideal measurement of the square of the 
Schrbdinger total local momentum, while Eq. (37) 
indicates another ideal measurement of the square 
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of the module of the Schrbdinger total local momen- 
Rim.  

In the Kohn-Sham (KS) theory [2], ks(r) is 
defined through the KS orbitals 

N 

k~S(r) = i N 

E I il 2 
i 

I DKfS)I(~i) ~--- ~i[~) i ) ,  --  ~- Vi 2 + 

( - I =  e ,  > > . . .  > (38 )  

where the HOMO energy (~l) is - I  [24]. Asymptot- 
ically, the KS effective potential is zero [24,25] 

lim ve~ f'Ks = 0, (39) 
r - - ~  

and ks~S(r) will take the following form: 
N 

~.,~ildpil 2 
lim ks~S(r) = l i m  i N = E I = - - I ,  ( 4 0 )  

r--- ,  ~ r-- ' ,  ~ ~14,,i  2 
i 

where we have used the fact that the KS HOMO will 
be the only orbital contributing to the asymptotic 
density. Similar relationship also holds for the 
Hartree-Fock (HF) theory [26,27], the natural orbital 
(NO) theory [28-30], and the Dyson orbital (DO) 
theory [ 18,20,31-33], 

kNO,  lim k ~ S ( r ) =  lim s ( r ) =  lim ksD°(r)= - 1 ,  
r---, ~ r--*~ r -+¢  

lim k~V(r )=  ~HoMoHF --- - 1 .  (41) 
r ---~ oo 

Here, the Koopmans theorem [26] and the asymptotic 
behavior of the exchange operator [27] have been 
applied for the HF case, and the extended Koopmans 
theorem [29,32] has been invoked for the NO and 
DO theories. 

In the pursuit of finding approximate representa- 
tions of the exact kinetic energy functional, several 
forms have been proposed [13]. So far, there are only 
four basic categories of the approximations based on 
the Thomas-Fermi (TF) theory [5,6], the full- 
Weizs~icker model [7-9], the Pad~ approximation 
[10], and the Conjointness conjecture [11-13]. The 
asymptotic behavior of typical examples of these 
four categories are tabulated in Table 1, and their 
asymptotic behaviors differ from that of the SES- 
LKE. Since the asymptotic behavior is one of the 
necessary conditions of any properly approximated 
SESLKE, further modification on the current kinetic 
energy functionals may be pursued. 

Noting that 

V2p(r) 
lira ~ = 8 I  (42) 

r---~ p ( r )  

from Eq. (28), one can modify the first two cate- 
gories easily by enforcing their long range behaviors 
like - I .  For example, for the first category, one may 
have 

to, e(r; [ p]) = CTFp(r) 5/3 -- ~ V2p(r),  (43) 

and for the second category, 

[Vp(r)l 2 
t t ~ ° ( r ; [P] )=C(N)p ( r )5 /3 - t  ~ p ( r )  

- ¼ V 2 p ( r ) ,  ( 4 4 )  

Table I 
Asymptotic behaviors of the exact and approximated single-electron local kinetic energy 

Category Typical Asymptotic References 
example behavior 

Thomas-Fermi CTF P(r) 2/3 0 [5,6] 

1 IVp(r)l 2 
Full-Weizs'b.cker C(N)p(r) 2/3 + +I [7-9] 

8 p(r) 2 
Pad6 approximation DePristo-Kress 3~ 1) a [ 10] 
Conjointness conjecture Becke86, Becke88 g(l) a [ 11-13] 

modified Eq. (43), F_z 1. (44) - 1 this work 
exact E.q. (8) - I  this work 

a 9'(1) and g ( l )  are complicated functions of 1, which in general d o  n o t  yield - L  
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where C ( N )  [7-9] is a function of N, the total 
number of electrons within a system. Their asymp- 
totic behaviors are coincident with that of Eq. (19), 
but their local behaviors are all different pointwise 
except for the intersections (Fig. 1). It should be 
noted that the added terms have no net effect on the 
total kinetic energy and the kinetic energy density 
functional derivative for a fixed, given density. 

As an illustration, the accurate HF wavefunction 
[34] of Ne atom will be employed. Fig. 1 shows the 
local behaviors of the SELKE for Ne atom, defined 
through Eqs. (221, (23) and (44). It can be seen that 
the SELKEs of Eqs. (22) and Eq. (44) show the long 
range behavior of - I ,  while the local behavior of 
the SELKE of Eq. (23) is positive everywhere and 
goes to + I  as r approaches infinity [17]. In the short 
range, Fig. 1 a indicates that the SELKE of Eq. (23) 
resembles a step function [35], with a finite value at 

(a) 

=. 
M v 

I,. v 
,,t¢ 

8 0  

1 0  

6 0  

8 0  

4 0  

3 0  

2 0  

1 0  

O 

- 1 0  
O.O0 

I Eq. (22) 

. - - , . . .  ............. I : : ' ,  

' % . . . "  

i i i i 

0 . 2 0  0 . 4 0  0 . 6 0  0 . 8 0  1 .O0 

r (a.u.) 

(i) 10 , ~ ~  Eq. 1221 
It/~. . . . . . .  Eq. (23) 

- 8  
O 1 2 3 4 5 6 

r (u.u.) 
Fig. 1. (a) Short-range and (b) long-hinge behavior of the single- 
electron local kinetic energy for Ne atom. The single-electron 
local kinetic energy is defined through the formulas of the kinetic 
energy density in Eqs. (22), (23) and (44). 

=. 

i .  

=~ 

2 0  

1 0  

;~ Eq. (22) 
| . . . . . .  Eq. (23) 

" , ~ ~ ............. Eq. (44) 

J . . . .  

: f  

- 1 0  , ~ , i 

o.oo o.4o o.8o 1.2o 1.6o 2.oo 

r (a.u.) 
Fig. 2. The short-range behavior of the single-electron local 
kinetic energy and the radial distribution function for Ne atom. 

the nucleus, where the SELKEs of Eq. (22) and Eq. 
(44) both diverge. More interestingly, only the SES- 
LKE defined via Eq. (22) keeps the energy conserva- 
tion point-to-point in the SchrSdinger equation as 
shown in Eq. (15). For comparison, the radial distri- 
bution function, D ( r ) ,  is plotted in Fig. 2 against 
various SELKE curves. However, Fig. 2 does not 
show any obvious correlation between the extrema 
of the SELKE and the radial distribution function. 

6. Conclusion 

The asymptotic behavior and the uniqueness of 
the single-electron local kinetic energy are proposed 
in this Letter. From both physical and theoretical 
points of view, it is found that the single-electron 
Schr&linger local kinetic energy goes to - I  at infin- 
ity, where I is the first ionization potential of the 
system. For the sake of convenience in the calcula- 
tion of the total kinetic energy, all possible defini- 
tions in Eq. (27) can be used if the density is fixed 
and given. However, it should be noted that although 
Green's theorem provides the same integral value, 
the physical meanings of the integrands cannot al- 
ways be maintained consistently throughout the inte- 
gral transformation. 
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