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Abstract

It is shown that various energy functionals in density functional theory, including the total correlation functional E [ p],
its kinetic-energy component T[ p], and its electron—electron repulsion component V[ p], can be expanded to good
accuracy in Laurent series in terms of a common set of homogeneous functionals of different specific degrees in coordinate
scaling: ..., (1+n), ..., 2, 1,0, =1, =2, ..., (1 —n), .... From the asymptotic behavior of the Kohn—Sham effective
potential, it is further argued that the local approximation to such Laurent series requires a complete truncation of the
Taylor-like component of the Laurent series, and the remaining series are combinations of functionals { p*) homogeneous in
p of degrees k=4/3,5/3,2,7/3, ..., (4+n)/3, .... Numerical results on atoms confirm the soundness of this theory.
Several exact integro-differential relations are derived within the adiabatic connection formulation.

1. Introduction where T, ‘7ee, and V:f‘u are the kinetic-energy, the
electron—electron repulsion, and the external poten-
tial operators, respectively. In the spirit of the
Kohn-Sham (KS) theory [7], F,[ p] is partitioned

into three main pieces:

As shown by Lieb and Levy [1,2], the Hohen-
berg-Kohn universal functional F[ p], defined
within an extended domain via the constrained-search

formulation [2,3], Flpl=T[p]l+A[p]l+AEL[ p], (3)
where T;[ p] is the noninteracting (A = 0) kinetic-en-
F[p]= (TANT + )J’/;elilf . (1) ergy functional, J[ p} is the classical electron—elec-

tron Coulomb repulsion functional, and EX[ p]is the
exact exchange—correlation functional. EX[ p]in turn

always has a minimum for an antisymmetric N-elec- :
can be decomposed into two components [8]:

tron wavefunction ¥*, which generates an N- and
v-representable electron density p(r), with a specific E:C[ p] = Ex[ p] + EQ[ p]; (4)
electron—electron interaction coupling constant A, It
was later revealed [4-6] that ¥* is an eigenstate of
the coupled Hamiltonian

namely, the A-independent exchange functional
Elpl

E[ p]= ¥ =W, w*=% —J[ p]
Hy=T+ W+ V5, (2) =Velel-7p]. (5)
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and the A-dependent correlation functional EX p],

EX p]l= (/NP1 + VI p]. (6)

where

T p]= (WHTIWE*) — (PA=0\T w2 -0)
=T"[p]-T[r] (7)

and

VAL p] = (WA V, W) — (FA=0V, [@rA=0)
=Valp] - Vel p]. (8)

In a discussion of the virial theorem, Levy and
Perdew [8] found three integro-differential relations
for E,[ pl. EN pland T pl

S.Elp]l=E[r]. (9)
—AEN p] +AS.EN p] =T p], (10)
and
dE}
EN pl=E p]-A d[A”]. (11)
Here,
3
S.= = Jarp(n(r- V)5 (12)

is the functional coordinate-scaling operator, which
delivers the degree of the homogeneity in coordinate
scaling of a well-behaved functional Q[ p] upon
acting on Q[ p][9,10]:

S$.0[p]=mol p], (13)
with
ol p,]1=v"0l p]. (14)
and
p,(r)=7vp(yr). (15)

Working from Egs. (10) and (11), one can readily
show [Appendix A] the following exact identities for

EN p), TN p1[10,11], and T*[ p}
a1 ,dEM p]
Tc[P]——Az—d—A—, (16)
a7l p]

$.TM pl =21 p] - A

dx (17)

and

dr*{ p]
. (18)

Similarly, one can further prove [Appendix B] exact
identities for V. pl, VA p), and V{ pl:

ST [pl=2T"[p]-A

SVelpl= Vil rl. (19)
dVelp] _dvllp]  14dT0]
dA dA A dA
__147[p] )
AT dr
delol Lol - Svalel. (21)
Tax e Fee
and
WL p1- st (22)

Here, Eqs. (9), (11), (17), (18), (19), (21), and (22)
involve only E [ pl, EN pl, TN pl, T p], V.2 p],
VA pl, and V[ p], respectively.

2. General Taylor series expansion near A =0

If one postulates [8,10,12,13] that EX p] can be
expanded as a full Taylor series in powers of A in
the vicinity of A =0,

1
Elp]l= X —TALPIN (23)

n=1

where the A, [ p] are homogeneous functionals of
degree (1 — n) in coordinate scaling [10,14]

Ale,]=v""A[p]. (24)

Consequently, Eq. (16) delivers a corresponding
Taylor series expansion for T p]1(10],

ol T 1),A JLplamt. (25)
n=1
Eqgs. (6) and (20) lead to [13,18]
> +1
viel- T (" Laloln. (26)
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and Egs. (5), (8), and (19) yield
Vel p]1=7[p] +E[ p]

g )

With A =1, Egs. (23) and (25-27) become

ALp]A. (27)

E[p]= ii Azap], (28)
TLp]= 2% _;é_aqa , (29)
vilpl= 55 (n:;I)An[p], (30)

n=|
and
(n+ 1)

Alp]
(31)

These series do not satisfy the low-y-limit scaling
properties put forward by Levy and Perdew [8,12,15],
such as

lim y~'E,[ p,] = finite. (32)
y=0

Vel pl=J[p] +E [ p] + 2:

n=1

Under an assumption of locality, the A [ p] have
been shown to be homogeneous functionals of de-
gree (4 — n)/3 in density scaling [10],
3A,[ p] 4 —n

dp(r ) 3

In other words [10], if the Taylor series expansions
in Egs. (23) and (25, 26) are valid, the present
derivation suggests that E [ p, T.[ p], and V[ p] are
(to some level of accuracy) combinations of local

functionals homogeneous in p(r) of degrees: 1,2/3,
1/3,0, —1/3, .

x.pl= L a, fp(r) " ar, (34)

n=1

fo(r) Al p]. (33)

where X [ p]is a dummy symbol standing for E [ p],
T.[pl, or V[ p], and {a,} are undetermined expan-
ston coefficients. Numerical results for atomic and
molecular species based on this local Taylor series
expansion are encouraging [10,16]. Generalizations

to include the current-density functional theory have
been given [17], and nonlocal explicit forms for
A,[ p] recently have been proposed [18].

However, the power series in Eq. (34) has to be
truncated from at least the fourth order on, since
these negative-power terms will ‘self-explode’ for
any exponentially decaying density,

la,|fp(r)* " dr=2(n=4,56,...), (35)

unless, either every coefficient or the sum of these
terms is zero. This reduces the infinite series in Eq.
(34) to a three-term summation [10,16],

X[pl= X a, fo(r)“ " dr. (36)

n=1

Furthermore, even this three-tern summation is not
acceptable if the asymptotic behavior of the KS
correlation potential [7]

SE[p]
dp(r)
comes into play. It is known that v (r) has a very

short-range and so is strongly vanishing at large
distance [19-22],

v(r) = (37)

lime (r)=0. (38)

Therefore, Eq. (36) is formally disqualified, since

58X | p
_C[—] =a,+3a,p7" +3a,p7%°
dp(r)

where a, introduces a constant shift into the KS
effective potential [7], while the last two terms in-
volving p~'/3 and p~?/? diverge asymptotically.

(39)

3. General Laurent series expansion in the pa-
rameter A

To overcome the problem facing the Taylor series
expansion of E p] in terms of local homogeneous
functionals, in the present paper special attention is
given to the point A =0, where E[ p] may not be
analytic. In that case, there may exist a general
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Laurent series expansion [23] in powers of A cen-
tered at A =0,

EDEWINIY ()

where the B,[ p] possess the same scaling properties
as the A,[ p] displayed in Egs. (24) and (33) under
the same conditions. Eqs. (25-27) similarly trans-
form into

M pl= i(—n)Bn[p]/\"“, (41)
v el= _Zx‘.(nﬂ)Bn[p]A", (82)
and

VALpl=s[p]+E[p]+ X (n+ 1B, p]A.

—x

(43)

One can formally split the Laurent series in Eqgs.
(40-42) into two infinite series,

X[ p]= ¥ x,B,[ p]A" + _ioxnsn[p]m.

n=1

(44)

Here, the first sum is a Taylor-like series, and the
second sum may be called the ‘Laurent-minus-
Taylor-like’ (L — T) series. Generally, the Taylor-like
series converges within its radius of convergence
Ry, while the L —T series converges outside its
radius of convergence R, ;. If Ry, > R, Eqgs. (40—
43) will have a non-empty domain of convergence,
and these equations will be valid only for those A
values between Ry and R, ; [23]

At A =1, if the B,[ p] are approximated by local
homogeneous functionals, the requirement of the
correct asymptotic behavior of v (r) [19-22] results
in a complete truncation of the positive terms (the
Taylor-like series), giving

E[p]l= _):Bn[p]= i Clrl. (45)

n=0

x

T[p]l= ;(—n)Bn[p]= 2 nClp],  (46)

n=1

Viel= X (n+ DB Lel= ¥ (1-nClpl.
N i (47)
and
vl pl=JLp1+ELp]+ £ (1-n)Cl o],
" (48)
where
Clel=B_[pl=c,jp(r)*"" dr
(n=0,1,2,...), (49)

and {c,} are coefficients yet to be determined. Inter-
estingly, in this representation, 7.[ p] does not have a
(p*/?) term, while V[ p] lacks a contribution from
( p5/3>_

With this new L — T series, the short-range and
long-range properties of v.(r) appear to be better
represented than by the Taylor series expansion in
Egq. (23). While fulfilling Eq. (32), Eq. (45) does not
satisfy the high-y-limit scaling properties advocated
by Levy and Perdew [8,12,15), for example,

lim E[p,]> —=. (50)
Yy x

4. Results and discussion

There are two possible reasons that the Taylor
series expansions in Egs. (23) and (25-27) might
diverge at A = 1. First, the Taylor series might not
even exist because of a singularity at A = 0, and the
general Laurent series in Egs. (40-43) would then
have to be introduced. Second, the radius of conver-
gence of the Taylor series expansions could be less
than 1: Ry <A =1. Similarly, if the radius of con-
vergence of the Taylor-like series expansions are less
than 1: R <A=1, the complete elimination of
such Taylor-like series from the general Laurent
series expansions, Eqs. (40—-43), will be legitimate.
In this case, the assumption of locality [10], together
with the argument from the long-range behavior
[19-22] of the KS effective potential [7], strongly
indicates Ry < R; 1 < A = 1. More detailed informa-
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Table 1

Convergence properties of the various series for a specific value
of A®

Domain of Convergent Corresponding
convergence series equations

0< ARy Taylor series Egs. (23) and (25-27)
Ri1 <A< Ry Laurent series Egs. (40-43)

A< Ry <Ry r Taylor-like series  first sum in Eq. (44)

Ry <A< R none none

Ry <Ryr<A L-—Tseries second sum in Eq. (44) °

*Ry, Ry, and Ry 7 are the radii of convergence of the Taylor
series, the Taylor-like series and the L — T series, respectively.
® For the special case of A= 1, the corresponding equations are

Egs. (45-48).

tion about the convergence property of the infinite
series here discussed is collected in Table 1.

Furthermore, the complementary scaling proper-
ties satisfied by the Taylor series, Eq. (23), and the
L — T series, Eq. (45), argue for a general attractive-
ness of the full Laurent series expansions, Eqs. (40—
43). However, it seems that going beyond the as-
sumption of locality will be necessary to resolve the
paradox presented by the necessity of completely
truncating the Taylor-like series expansions. At the
present stage of understanding, the effectiveness of a
particular series should be judged by its numerical
performance.

To test the validity of Eqgs. (45-46), one may
keep only terms with n <3,

zi:ocn[p]

=c,{ p¥?) +c{p¥*) + c,{ p*),

i

Ec3[ P]
(51)

2
Tc3[ P] = Z ncn[ P] = C|< P5/3> +202< PZ>,

n=1

and with n < 4,
Ec4[ p]

é)cn[ r]

=co{ p¥ ) + ¢, {p*3) + ¢, p?) + ("),
3

(53)

Tyl pl= ¥ nClp]l=c(p*?) +2¢,(p?

n=1

In

+3ci(p"?). (54)

Least-square fitting is employed to determine coeffi-
cients. The data for the density functional theory
(DFT) E, of the first eighteen atoms were taken
from a recent optimized-effective-potential (OEP)
calculation by Grabo and Gross [24]; and for T,
from Morrison and Zhao [25]. Due to its peculiar
value, the T_ value for Ar was excluded from the T,
data set [25] used in the fitting. All these data are
enumerated in Table 3. Densities were taken as the
accurate RHF results of Clementi and Roetti [26].

Three types of least-square fitting have been per-
formed over these three data sets. First, the E,
scheme fits Eq. (51) to the DFT E, data set; second,
the (E, + T.); scheme simultaneously fits Eqgs. (51)
and (52) to the DFT E_ data set and the 7, data set;
and finally, the (E, + T.), scheme fits Eqgs. (53) and
(54) to the DFT E_ data set and the 7, data set.
Results are compared in Tables 2 and 3: Table 2
displays the expansion coefficients {c,, n < 4} for
the truncated L — T series in Eqs. (51-54), and
Table 3 shows the fitted E. and 7, values. Figs. 1
and 2 depict some of the results.

From Table 3 and Fig. 1, one sees that the E_
scheme faithfully reproduces the DFT E_ data with a
mean absolute deviation of only 0.0074 hartree. This

(52) is better than the previous results of the Taylor series
Table 2
Fitted expansion coefficients for the truncated L — T series in Egs. (51-54) ab
Scheme Co cy c, ¢y
E, —0.4036 X 107! 0.7584 % 1072 —0.4255X 1073
(E.+T,), —0.5268 X 10~ 0.1286 % 10~ ~0.7688 X 103
(E.+T), -0.6177x 107! 0.2078 x 107! -0.2226 X 1072 0.6963 X 10~ *

 All values are in atomic units.

®(E +T,); and (E +T,), stand for the results from the 3-term and 4-term least-square-fittings to the DFT E, and the T, data sets,
respectively. E, stands for the result from the E, scheme of the 3-term least-square-fitting to the DFT E_ data set.
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Table 3

Fitted 7, and E, values compared with previous published T, and DFT E, data *>¢¢

Atom z T, DFT E, E, T E.; T, E.,

H i 0.000 0.0000 -0.0109 0.0012 -0.0139 0.0019 -0.0158
He 2 0.037 —0.0416 -0.0419 0.0103 -0.0522 0.0153 ~0.0571
Li 3 0.038 —0.0509 ~0.0667 0.0251 —0.0808 0.0353 -0.0853
Be 4 0.074 ~0.0934 ~0.0953 0.0459 -0.1126 0.0612 -0.1159
B 5 0.095 —0.1289 -0.1275 0.0714 —0.1475 0.0904 —0.1494
C 6 0.12 —0.1608 —0.1650 0.1018 —0.1875 0.1225 -0.1883
N 7 0.15 -0.1879 —0.2081 0.1369 -0.2326 0.1574 -0.2327
o] 8 0.19 —0.2605 —0.2548 0.1758 ~0.2806 0.1939 -0.2802
F 9 0.24 -0.3218 -0.3070 0.2188 -0.3333 0.2329 -0.3326
Ne 10 0.30 ~0.3757 —0.3643 0.2658 -0.3903 0.2749 -0.3894
Na I 031 —0.4005 - 0.4044 0.3066 -0.4243 0.3065 -0.4217
Mg 12 0.34 ~0.4523 ~0.4458 0.3425 —0.4589 0.3326 —0.4560
Al 13 035 —0.4905 —0.4870 0.3714 —0.4925 0.3530 ~0.4902
Si 14 0.36 ~0.5265 ~0.5310 0.3914 -0.5293 0.3691 —0.5284
P 15 0.41 —0.5594 -0.5783 0.4006 —0.5698 0.3823 -0.5707
S 16 0.39 —0.6287 - 0.6282 0.3964 -0.6138 0.3940 ~0.6160
cl 17 0.41 —0.6890 -0.6824 0.3772 ~0.6635 0.4072 ~0.6657
Ar 18 0.21 -0.7435 —0.7416 0.3406 -0.7198 0.4254 —0.7196
5 0.0074 0.0177 0.0178 0.0087 0.0180
5¢ 0.0160 0.0216 0.0197

® All values are in hartree.

® The DFT E, data and the 7, data are from Refs. [23,24), respectively. The previous published T, value of Ar has been excluded from the

data set due to its abnormal value.
<

for the result from the E_ scheme.

T and E,; stand for the results from the (E, + T.); scheme. Similarly, T,, and E,, stand for the results from the (E, + T.),. E, stands

¢ & denotes the mean absolute deviation from the corresponding literature values.
¢ From Ref. [10], the results of the three-term Taylor series expansions, Eq. (36).

expansions Eq. (36) [10] on the same set of atoms.
However, the final judgement has to be made based
on much more extended ionic and molecular sys-

Fig. 1. The 3-term least-square fitting results (solid line) for the
DFT E, data set (Q1) for the first two-row neutral atoms.

tems. The results in Table 3 also identify several
atoms where better account of spin polarization may
be needed: Li, N, and P.

0.75

4

0.504
j [

1
0.257

EcandTc(a.u)

T T T T T T T 1 1
0 2 4 6 8 10 12 14 16 18 20

Fig. 2. The 4-term least-square fitting (E, + T,), results (solid
line) for the 7, and DFT E, data sets (O) for the first two-row
neutral atoms.
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The quality of fitting (especially for the first-row
atoms) deteriorates once the 7, data set is included,
and the (E_ + T.); scheme has mean absolute devia-
tions of more than 0.0176 hartree for the whole set
of T. and E_ values. With one more term in the
expansion, the (E,+7T.), scheme shows big im-
provement over the (E, + 7,); scheme. With little
sacrifice in the overall quality of the fitted E_ val-
ues, the (E, + T.), scheme cuts by more than one
half the mean absolute deviation of the T, values
from those given by the (E, +7,); scheme. More
importantly, the (E, + T), scheme predicts a mono-
tonically increasing trend in the values of T, as one
progresses toward the heavier atoms, while the (E,
+ T.); scheme fails to do this after the P atom.

Moreover, as shown in Tables 2 and 3, when
going from the (E, + T,); scheme to the (E, +T.),
scheme, the fitted expansion coefficients have a large
fluctuation, and both the (E, + T.); and (E,  + T.),
schemes have bigger mean absolute deviations than
the E, scheme does. This is probably due to the fact
that the 7, data set [25] is only reliable with two
significant figures and less reliable for heavier atoms
which dominate the globe minimum searching pro-
cess. Further studies along the line of improving the
literature £, and T, data sets are crucial.

Based upon the good performance of the L—T
series with local homogenous functionals, one ought
to be optimistic about molecular applications. Fur-
thermore, the simplicity of the form of the function-
als and better short-range and long-range behaviors
will enhance the capability of the present theory.
However, it would appear to be very desirable to try
to gain additional understanding of the analytic prop-
erties of the various functionals X[ p], especially in
the region near A = 0.

5. Conclusion

The numerical performance of the L — T series
expansions, as shown in Egs. (45-48), adequately
demonstrates the effectiveness of the present pro-
posal. These Laurent series expansions (both full and
truncated) are well worth further investigation. More
profound understanding of their convergence proper-
ties and the effects of the locality assumption will be
essential to settle precisely which series is the best.
Although this primary comparison shows that the

L. — T series expansions perform better than the Tay-
lor series expansions (10}, it is quite necessary to
further test them for molecular systems [16].
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Appendix A

A.l. Exact equations for EM pl, TM p], and T*[p]
Eliminating the common terms between Egs. (10,

11) yields Eq. (16) [10,11]

dE! p]
lel=-N—r-

Acting with S, on both sides of Eq. (Al) and
substituting Egs. (11) and (Al) into the right-hand
side of Eq. (A1), one finds Eg. (17) [10]

dT[ p]
dA

Furthermore, knowing T.[ p] is homogeneous of de-
gree two in the coordinate scaling [8],

(A1)

ST pl=2T2[ p] - A (A2)

Tlp,1=7'T[r]. (A3)
one has
S.T[pl=27[p]. (A4)

Then, combining Eqs. (A2) and (A4) with the help
from Eq. (7), one obtains Eq. (18),

N ar 1 d7*[ o]
ST pl=2T"[p] - A—p—. (AS)

Appendix B

B.1. Exact equations for V2 [p] and VM p]

Levy and Perdew [8] derived a direct relation
between T*[ p] and V[ pl,

2 p] = 8.1 [p] = A(-Val p1+ SVl o).
(B1)
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which is of a combined form of Eqgs. (28, 29) of Ref.
[8]. Eq. (7) partitions the left-hand side of Eq. (B1)
into two contributions, from T[ p] and T p], with
the T[ p] contribution identically zero due to Eq.
(A4). Then, substitution of Eq. (A2) into the remain-
ing left-hand side of Eq. (B1) gives a direct relation
between T\ p] and VA p],

a7 p]
dA
Since according to Eq. (45) of Ref. [8] and Eq. (4)
Valpl=JLpl +ELL p]1 +EX p] - S.EX p]
=J[pl+E[p]+2Ep]

—Valp]+ 3 Vil p]. (B2)

-S\cEc/\[p]’ (B3)
one finds
dvilp] d 5
e (2EM p]-S$.EN ). B4
o 5 (CELP1=S.EL p]) (B4)
Egs. (11) and (A1) help simplify Eq. (B4) to
dval o] szc*[ pl  dEp]
dx T da 42
1 dT
__tartel (B5)
A dA

Combination of Egs. (B2) and (B5) now produces an
identity [Eq. (21)] involving V[ p] alone,

AdVeé[p] \

=V — S VAl pl. B6
i wlpl =SVl rl (B6)
Interestingly, this is of the same form as Eq. (11) for
E} pl.

Moreover, Egs. (5) and (8) indicate a three-way
partition for V[ p],

Valpl=Jlpl+E[p]+Vip]. (B7)

in which E,[ p] and J[ p] are both homogeneous of
degree one in the coordinate scaling [8],

E[p]=7vE[r]. (B8)
JLe,1=vi1p] (BY)
These quantities respectively satisfy Eq. (9) and

S.a[el=Jpl. (B10)

Thus, Eq. (B6) reduces to an identity [Eq. (22)]
involving only VA p]

dvA .
#j%d=nﬁﬂ—&th

Similarly in Eq. (BS), the A-independence of J[ p],
E [ pl, and T[ p] leads to Eg. (20),

(BI1)

dvalp]  avi[p] 1d7[ p]
dx  dx A da
1 d7*
__Larel (B12)
A dA

Then, subtracting Eq. (B11) from Egq. (B6) yields Eq.
(19),

SVl p1= Vil pl. (B13)
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