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Abstract 

It is shown that various energy functionals in density functional theory, including the total correlation functional E,[ p], 
its kinetic-energy component T,[ p], and its electron-electron repulsion component V,[ p], can be expanded to good 
accuracy in Laurent series in terms of a common set of homogeneous functionals of different specific degrees in coordinate 
scaling: . . . . (1 +n), . . . . 2, I, 0, - 1, -2, . . . . (1 -n), . . . . From the asymptotic behavior of the Kohn-Sham effective 
potential, it is further argued that the local approximation to such Laurent series requires a complete truncation of the 
Taylor-like component of the Laurent series, and the remaining series are combinations of functionals ( pk) homogeneous in 
p of degrees k = 4/3, S/3, 2, 7/3, . . . , (4 + n)/3, . . . . Numerical results on atoms confirm the soundness of this theory. 
Several exact integro-differential relations are derived within the adiabatic connection formulation. 

1. Introduction 

As shown by Lieb and Levy [1,2], the Hohen- 
berg-Kohn universal functional F’[ pl, defined 
within an extended domain via the constrained-search 
formulation [2,3], 

F*[ p] = (?P*l~+A~JP*), (1) 

always has a minimum for an antisymmetric N-elec- 
tron wavefunction P ‘, which generates an N- and 
u-representable electron density p(r), with a specific 
electron-electron interaction coupling constant A. It 
was later revealed [4-61 that q” is an eigenst&e of 
the coupled Hamiltonian 

where ?, qe,, and qei, are the kinetic-energy, the 
electron-electron repulsion, and the external poten- 
tial operators, respectively. In the spirit of the 
Kohn-Sham (KS) theory [7], F*[ p] is partitioned 
into three main pieces: 

F,[ PI= T,[ PI+ AJ[ PI+ AE;c[ ~19 (3) 

where T,[ p] is the noninteracting (A = 0) kinetic-en- 
ergy functional, J[ p] is the classical electron-elec- 
tron Coulomb repulsion functional, and EiJ p] is the 
exact exchange-correlation functional. E,“,[ p] in turn 
can be decomposed into two components [8]: 

E,“,[ PI = E,[ ~1 +E:[ ~1; (4) 
namely, the A-independent exchange functional 
E,[ ~1, 

E,[ p] = (~A=o~l?ee~~h=O) - J[ p] 

=v,,o[Pl-J[Pl~ (5) 
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and the A-dependent correlation functional E,“[ pl, 

E~[pl=(I/A)T~[pl+V~[pl, (6) 
where 

and 

= CL PI - CI PI * (8) 
In a discussion of the virial theorem, Levy and 
Perdew [81 found three integro-differential relations 
for EJ PI, E,“[ pl and T:[ pl: 

Lcbl=4[Pl~ (9) 
- qy p] + h$E,“[ p] = qA[ p] 9 (‘0) 
and 

d&Y PI 
@,A[P]=E;[P]-A dA . 

Here, 

$= -jdTp(r)(r. V)&, 

(‘1) 

(‘2) 

is the functional coordinate-scaling operator, which 
delivers the degree of the homogeneity in coordinate 
scaling of a well-behaved functional Q[ p] upon 
acting on Q[ pl [9,10]: 

$Q[ P] = mQ[ P] 7 (13) 

with 

Q[ P,] = rmQ[ P] 9 (14) 

and 

p,(r) = r”P(yr). (15) 

Working from Eqs. (10) and (1 l), one can readily 
show [Appendix A] the following exact identities for 
E,“t pl, T:[ pl [lo,1 11, and TA[ pl: 

dE,“[ PI 
T:[ P]= -A2 d A  ,  

dT,“[ PI 
$c*[ p] = 273 p] - AT, 

(16) 

(17) 

and 

dT”[ P] 
$T’[ p] = 2TA[ p] - AT. (18) 

Similarly, one can further prove [Appendix B] exact 
identities for V,t[ p], VCt[ p], and VCA[ p]: 

09 PI = VeZ PI) 

dVe3 PI WY PI 1 Kit P] -= -=----_ 
dh dA A dA 

1 dTXL: P] = --- 
A dh ’ 

Acx PI 
dh = vex PI - w3 PI 9 

and 

A dVcY PI -= 
dh VA PI - WI PI f 

(‘9) 

(20) 

(2’) 

(24 

Here, Eqs. (9), (111, (171, (181, (191, (21), and (22) 
involve only .E,[ pl, E,“[ PI, T,“t PI, T”[ PI, V,f[ PI, 
Vet[ p], and VcA[ pl, respectively. 

2. General Taylor series expansion near A = 0 

If one postulates [8,10,12,13] that E:[p] can be 
expanded as a full Taylor series in powers of A in 
the vicinity of A = 0, 

E,“[ P] = i ;A,,[ PIA”, 
“=, n. 

(23) 

where the A,[ p] are homogeneous functionals of 
degree (1 - n) in coordinate scaling [ 10,141 

A,[ P,] = +“A,[ P]. (24 

Consequently, Eq. (16) delivers a corresponding 
Taylor series expansion for q*[ p] [lo], 

x -1 
T*[P]=~?~ (n_l)!A,[~]A”+‘. 

Eqs. (6) and (20) lead to [13,18] 

Vc”[ p] = i yA,j p]A”, 
n= I 

(25) 

(26) 
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and Eqs. (51, (81, and (19) yield 

V~[Pl=J[Pl+4[Pl 
= (n+l) +c-- “= I ,, Ani PIA”. 

With A = 1, Eqs. (23) and (25-27) become 

?.c -Ani PI 
c[+F, (n-])! ’ (29) 

Cc (n+l) 
v,bl= c n,‘%[Pl* 

n= I 
(30) 

(27) 

and 

(31) 
These series do not satisfy the low-y-limit scaling 
properties put forward by Levy and Perdew [8,12,15], 
such as 

lim r-‘E,[ pY] = finite. 
Y-0 

(32) 

Under an assumption of locality, the A,[ p] have 
been shown to be homogeneous functionals of de- 
gree (4 - n)/3 in density scaling [IO], 

/p(r) 
~‘%bldT_ 4-n 
gP(r) 

-A,[ PI. (33) 

In other words [lo], if the Taylor series expansions 
in Eqs. (23) and (25, 26) are valid, the present 
derivation suggests that .!?,[ p], T,[ p], and V,[ p] are 
(to some level of accuracy) combinations of local 
functionals homogeneous in p(r) of degrees: 1,2/3, 
l/3, 0, -l/3, ‘..) 

X,[ p] = c a, jp( r)(4-n)‘3 dr , (34) 
“= I 

where X,[ p] is a dummy symbol standing for E,[ p], 
T,[ pl, or V,[ p], and {a,,] are undetermined expan- 
sion coefficients. Numerical results for atomic and 
molecular species based on this local Taylor series 
expansion are encouraging [ 10,161. Generalizations 

to include the current-density functional theory have 
been given [ 171, and nonlocal explicit forms for 
A,,[ p] recently have been proposed [IS]. 

However, the power series in Eq. (34) has to be 
truncated from at least the fourth order on, since 
these negative-power terms will ‘self-explode’ for 
any exponentially decaying density, 

la,llp(r)‘4-n”3d7=x,(n=4,5,6 ,... ), (35) 

unless, either every coefficient or the sum of these 
terms is zero. This reduces the infinite series in Eq. 
(34) to a three-term summation [ 10,161, 

X,[ p] = i a, /p( r)(4-n)‘3 dr (36) 
n= I 

Furthermore, even this three-term summation is not 
acceptable if the asymptotic behavior of the KS 
correlation potential [7] 

w PI uc( r) = ~ 
sP(r) ’ 

comes into play. It 
short-range and so 
distance [ 19-221, 

lim uC(r) =O. 
r-x 

(37) 

is known that u,(r) has a very 
is strongly vanishing at large 

(38) 

Therefore, Eq. (36) is formally disqualified, since 

w[ PI -= 
sP(r) 

a, +;a,p-‘/3+fc23p-*/3, (39) 

where a, introduces a constant shift into the KS 
effective potential [7], while the last two terms in- 
volving p-l/’ and p- *I3 diverge asymptotically. 

3. General Laurent series expansion in the pa- 
rameter A 

To overcome the problem facing the Taylor series 
expansion of E,$ p] in terms of local homogeneous 
functionals, in the present paper special attention is 
given to the point A = 0, where E:[ p] may not be 
analytic. In that case, there may exist a general 
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Laurent series expansion [23] in powers of A cen- 
tered at A = 0, 

where the B,[ p] possess the same scaling properties 
as the A,[ pl displayed in Eqs. (24) and (33) under 
the same conditions. Eqs. (25-27) similarly trans- 
form into 

T,^[ p] = 2 (-n)B,[ pIA”+‘, (41) 
--x 

and 

cM=Jbl+4M+ i(~+wPl~“. -22 
(43) 

One can formally split the Laurent series in Eqs. 
(40-42) into two infinite series, 

II= I n=O 
(44) 

Here, the first sum is a Taylor-like series, and the 
second sum may be called the ‘Laurent-minus- 
Taylor-like’ (L - T) series. Generally, the Taylor-like 
series converges within its radius of convergence 

Rr, ’ while the L - T series converges outside its 
radius of convergence R, . If R,, a R,, , Eqs. (40- 
43) will have a non-empty domain of convergence, 
and these equations will be valid only for those A 
values between R,, and R,, [23]. 

At A = 1, if the B,[ p] are approximated by local 
homogeneous functionals, the requirement of the 
correct asymptotic behavior of u,(r) [19-221 results 
in a complete truncation of the positive terms (the 
Taylor-like series), giving 

and 

Lbl=Jbl+Exbl+ i (1 -%bl~ n=O 
(48) 

where 

C,[ p] = B_,[ p] = c, jp( r)(4+n)‘3 dr 

(n=0,1,2 ,... ), (49) 

and {c,} are coefficients yet to be determined. Inter- 
estingly, in this representation, r,[ p] does not have a 

; ;z;:; t 
erm, while V,[ p] lacks a contribution from 

With this new L - T series, the short-range and 
long-range properties of U,(T) appear to be better 
represented than by the Taylor series expansion in 
Eq. (23). While fulfilling Eq. (321, Eq. (45) does not 
satisfy the high-y-limit scaling properties advocated 
by Levy and Perdew [8,12,15], for example, 

lim E,[ p,,] > --x. (50) 
Y-r 

4. Results and discussion 

There are two possible reasons that the Taylor 
series expansions in Eqs. (23) and (25-27) might 
diverge at A = 1. First, the Taylor series might not 
even exist because of a singularity at A = 0, and the 
general Laurent series in Eqs. (40-43) would then 
have to be introduced. Second, the radius of conver- 
gence of the Taylor series expansions could be less 
than 1: R, < A = 1. Similarly, if the radius of con- 
vergence of the Taylor-like series expansions are less 
than 1: R,, < A = 1, the complete elimination of 
such Taylor-like series from the general Laurent 
series expansions, Eqs. (40-431, will be legitimate. 
In this case, the assumption of locality [lo], together 
with the argument from the long-range behavior 
[19-221 of the KS effective potential [7], strongly 
indicates R,, < R,, Q A = 1. More detailed informa- 
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Table I 
Convergence properties of the various series for a specific value 
of Aa 

Domain of 
convergence 

Convergent 
series 

Corresponding 
equations 

O<A<R, Taylor series Eqs. (23) and (25-27) 
RtrdA<RT, Laurent series Eqs. (40-43) 
h<R,<R,, Taylor-like series first sum in Eq. (44) 
R, < A < R,, none none 
R,.,<RLTgA L-Tseries second sum in Eq. (44) b 

‘R,, R,,, and R,, are the radii of convergence of the Taylor 
series, the Taylor-like series and the L-T series, respectively. 
b For the special case of A = 1, the corresponding equations are 
Eqs. (45-48). 

tion about the convergence property of the infinite 
series here discussed is collected in Table 1. 

Furthermore, the complementary scaling proper- 
ties satisfied by the Taylor series, Eq. (23), and the 
L - T series, Eq. (451, argue for a general attractive- 
ness of the full Laurent series expansions, Eqs. (40- 
43). However, it seems that going beyond the as- 
sumption of locality will be necessary to resolve the 
paradox presented by the necessity of completely 
truncating the Taylor-like series expansions. At the 
present stage of understanding, the effectiveness of a 
particular series should be judged by its numerical 
performance. 

To test the validity of Eqs. (45-461, one may 
keep only terms with n < 3, 

43LPb i CJPI 
n-0 

= co( p 4’3)+c,(p5’3)+c*(p2), (51) 

T,,[ p] = ; “CJ p] = c,( p5’3) + 2c,( p2>, 
n= I 

(52) 

and with n < 4, 

Ec4C PI 

= i a PI 
n=O 

= co< p 4’3) + c,( p5’3) + c*( p2) + CJ( pq, 

(53) 

q.4[ p] = i nc,[ p] = c,( p5’3) + 2c,( p2> 

n= I 

+ 3c,( p7’3). (54) 
Least-square fitting is employed to determine coeffi- 
cients. The data for the density functional theory 
(DFI’) EC of the first eighteen atoms were taken 
from a recent optimized-effective-potential (OEP) 
calculation by Grabo and Gross [24]; and for T,, 
from Morrison and Zhao [25]. Due to its peculiar 
value, the T, value for Ar was excluded from the T, 
data set [25] used in the fitting. All these data are 
enumerated in Table 3. Densities were taken as the 
accurate RHF results of Clementi and Roetti [26]. 

Three types of least-square fitting have been per- 
formed over these three data sets. First, the EC 
scheme fits Eq. (51) to the DFT EC data set; second, 
the (EC + ?I3 scheme simultaneously fits Eqs. (51) 
and (52) to the DFT EC data set and the T, data set; 
and finally, the (EC + T,>, scheme fits Eqs. (53) and 
(54) to the DFT EC data set and the q data set. 
Results are compared in Tables 2 and 3: Table 2 
displays the expansion coefficients {c,, n < 4) for 
the truncated L - T series in Eqs. (51-541, and 
Table 3 shows the fitted EC and T, values. Figs. 1 
and 2 depict some of the results. 

From Table 3 and Fig. 1, one sees that the EC 
scheme faithfully reproduces the DFT EC data with a 
mean absolute deviation of only 0.0074 hartree. This 
is better than the previous results of the Taylor series 

Table 2 
Fitted expansion coefficients for the truncated L - T series in Eqs. (5 l-54) a.b 

Scheme CO c c2 =3 

-0.4036 X IO-’ 0.7584 X IO- 2 -0.4255 X IO-’ 
-0.5268 x IO- ’ 0.1286 X IO- ’ -0.7688 X IO-’ 
-0.6177 x IO-’ 0.2078 x IO- ’ - 0.2226 X lo- 2 0.6963 X IO- 4 

a All values are in atomic units. 
b (EC + T,), and (.E, + Tcj4 stand for the results from the 3-term and Cterm least-square-fittings to the DFT E, and the T, data sets, 

respectively. E, stand: for the result from the E, scheme of the 3-term least-square-fitting to the DFT E, data set. 
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Table 3 
Fitted T, and E, values compared with previous published T, and Dm E, data a.b.c.d 

Atom Z T, DFT E, E, T C? E c3 T c4 E t4 

H 
He 
Li 
Be 
B 
C 
N 
0 
F 
Ne 
Na 

Mg 
Al 
Si 
P 
s 
Cl 
Ar 
6 
6’ 

2 0.037 
3 0.038 
4 0.074 
5 0.095 
6 0.12 
7 0.15 
8 0.19 
9 0.24 

IO 0.30 
II 0.3 I 
I2 0.34 
13 0.35 
I4 0.36 
I5 0.41 
I6 0.39 
17 0.41 
I8 0.21 

o.oooo 
-0.0416 
- 0.0509 
- 0.0934 
-0.1289 
-0.1608 
-0.1879 
- 0.2605 
-0.3218 
- 0.3757 
- 0.4005 
- 0.4523 
- 0.4905 
- 0.5265 
- 0.5594 
- 0.6287 
- 0.6890 
- 0.7435 

-0.0109 0.0012 
- 0.0419 0.0103 
- 0.0667 0.025 I 
- 0.0953 0.0459 
- 0.1275 0.0714 
-0.1650 0.1018 
- 0.208 I 0.1369 
- 0.2548 0.1758 
- 0.3070 0.2188 
- 0.3643 0.2658 
- 0.4044 0.3066 
- 0.4458 0.3425 
- 0.4870 0.3714 
-0.5310 0.3914 
- 0.5783 0.4006 
- 0.6282 0.3964 
- 0.6824 0.3772 
-0.7416 0.3406 

0.0074 0.0177 
0.0160 0.02 I6 

-0.0139 
- 0.0522 
- 0.0808 
-0.1126 
-0.1475 
-0.1875 
- 0.2326 
- 0.2806 
- 0.3333 
- 0.3903 
- 0.4243 
- 0.4589 
- 0.4925 
- 0.5293 
- 0.5698 
-0.6138 
- 0.6635 
-0.7198 

0.0178 
0.0197 

0.0019 -0.0158 
0.0153 - 0.057 I 
0.0353 - 0.0853 
0.0612 -0.1159 
0.0904 -0.1494 
0.1225 -0.1883 
0.1574 - 0.2327 
0.1939 - 0.2802 
0.2329 - 0.3326 
0.2749 - 0.3894 
0.3065 -0.4217 
0.3326 - 0.4560 
0.3530 - 0.4902 
0.3691 - 0.5284 
0.3823 - 0.5707 
0.3940 -0.6160 
0.4072 - 0.6657 
0.4254 -0.7196 
0.0087 0.0180 

a All values are in hartree. 
b The DFT E, data and the T, data are from Refs. [23,24], respectively. The previous published r, value of Ar has been excluded from the 
data set due to its abnormal value. 
’ T,, and EC3 stand for the results from the (E, + qj3 scheme. Similarly, T,, and Ec4 stand for the results from the (E, + Tcj4. E, stands 
for the result from the E, scheme. 
d 6 denotes the mean absolute deviation from the corresponding literature values. 
e From Ref. [IO], the results of the three-term Taylor series expansions, Eq. (36). 

expansions Eq. (36) [lo] on the same set of atoms. 
However, the final judgement has to be made based 
on much more extended ionic and molecular sys- 

Fig. I. The 3-term least-square fitting results (solid line) for the 
Dm E, data set (Cl) for the first two-row neutral atoms. 

terns. The results in Table 3 also identify several 
atoms where better account of spin polarization may 
be needed: Li, N, and P. 

Fig. 2. The Cterm least-square fitting (E, + Tcj4 results (solid 
line) for the T, and Dm E, data sets (0) for the first two-row 
neutral atoms. 
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The quality of fitting (especially for the first-row 
atoms) deteriorates once the T, data set is included, 
and the (EC + T,), scheme has mean absolute devia- 
tions of more than 0.0176 hartree for the whole set 
of T, and EC values. With one more term in the 
expansion, the (EC + T,), scheme shows big im- 
provement over the (EC + qj3 scheme. With little 
sacrifice in the overall quality of the fitted EC val- 
ues, the (EC + TCj4 scheme cuts by more than one 
half the mean absolute deviation of the T, values 
from those given by the (EC + TCj3 scheme. More 
importantly, the (EC + TCj4 scheme predicts a mono- 
tonically increasing trend in the values of T, as one 
progresses toward the heavier atoms, while the (EC 
+ T,), scheme fails to do this after the P atom. 

Moreover, as shown in Tables 2 and 3, when 
going from the (EC + c 1) scheme to the (EC + T, j4 
scheme, the fitted expansion coefficients have a large 
fluctuation, and both the (EC + T,), and (EC + q14 
schemes have bigger mean absolute deviations than 
the EC scheme does. This is probably due to the fact 
that the T, data set [25] is only reliable with two 
significant figures and less reliable for heavier atoms 
which dominate the globe minimum searching pro- 
cess. Further studies along the line of improving the 
literature EC and T, data sets are crucial. 

Based upon the good performance of the L - T 
series with local homogenous functionals, one ought 
to be optimistic about molecular applications. Fur- 
thermore, the simplicity of the form of the function- 
als and better short-range and long-range behaviors 
will enhance the capability of the present theory. 
However, it would appear to be very desirable to try 
to gain additional understanding of the analytic prop- 
erties of the various functionals X,‘[ p], especially in 
the region near A = 0. 

5. Conclusion 

The numerical performance of the L - T series 
expansions, as shown in Eqs. (45-481, adequately 
demonstrates the effectiveness of the present pro- 
posal. These Laurent series expansions (both full and 
truncated) are well worth further investigation. More 
profound understanding of their convergence proper- 
ties and the effects of the locality assumption will be 
essential to settle precisely which series is the best. 
Although this primary comparison shows that the 

L - T series expansions perform better than the Tay- 
lor series expansions [lo], it is quite necessary to 
further test them for molecular systems [16]. 

Acknowledgements 

This research was supported by a grant from the 
National Science Foundation to the University of 
North Carolina at Chapel Hill. 

Appendix A 

A.I. Exact equations for E;\lpl, q.‘lpl, and T”[pl 

Eliminating the common terms between Eqs. (10, 
11) yields Eq. (16) [lO,ll] 

T;[ p] = -A2 
W’[ P] 

dh (‘41) 
Acting with $c on both sides of Eq. (Al) and 
substituting Eqs. (11) and (Al) into the right-hand 
side of Eq. (Al), one finds Eq. (17) [lo] 

dTcY PI i&*[ p] = 2T;[ p] - hdh . (‘42) 
Furthermore, knowing T,[ pl is homogeneous of de- 
gree two in the coordinate scaling [8], 

r,[P,l=Y2T,[PL (A31 
one has 

Rr,[ PI = 272 PI. (A41 
Then, combining Eqs. (A2) and (A4) with the help 
from Eq. (71, one obtains Eq. (IS>, 

dT*[ P] 
$TA[ p] = 2TA[ p] - hdh . (A9 

Appendix B 

B.1. Exact equations for Vk[pl and V:[pl 

Levy and Perdew [S] derived a direct relation 
between T’\[ p] and VL[ p], 

2TA[ P] - $TA[ P] = “( -Va,[ P] f $v,;z[ P]) > 

031) 
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which is of a combined form of Eqs. (28, 29) of Ref. 
[8]. Eq. (7) partitions the left-hand side of Eq. (Bl) 
into two contributions, from 7”[ P] and TcA[ P], with 
the T,[ P] contribution identically zero due to Eq. 
(A4). Then, substitution of Eq. (A2) into the remain- 
ing left-hand side of Eq. (B 1) gives a direct relation 
between 7”[ P] and Vz[ pl, 

dT,“[ PI 
-= -c[Pl+~cc[Pl. dh 

Since according to Eq. (4.5) of Ref. [8] and Eq. (4) 

VJ PI =J[ PI +J%, PI +w PI - hY PI 

= J[ PI + 4[ PI + m3 PI 

-GYY PI* 
one finds 

wx PI d 
~ = -&9[ PI - $E;[ ~1). 

dh 

Eqs. (11) and (Al) help simplify Eq. (B4) to 

dVet[ PI p= 2 dEct[ PI +*d2EA PI 
dh dh d2A 

1 dT,“[ PI = _- 
A dh . 

(B3) 

(B4) 

WI 

Combination of Eqs. (B2) and (B5) now produces an 
identity [Eq. (2l)l involving Vct[ pl alone, 

Ad”et[ PI -= 
dh 

vex PI - ~cvet[ PI. 

Interestingly, this is of the same form as Eq. (11) for 

E:[ PI- 
Moreover, Eqs. (5) and (8) indicate a three-way 

partition for VJ pl, 

CL PI=4 PI +a PI +vc? PI. (B7) 
in which E,[ p] and J[ p] are both homogeneous of 
degree one in the coordinate scaling [S], 

E,[P,I=YE,[PI, WI 

J[P,l=YJ[Pl. (B9) 

These quantities respectively satisfy Eq. (9) and 

~cJbl=J[Pl. @lo) 

Thus, Eq. (B6) reduces to an identity [Eq. (2211 
involving only VcA[ p] 

dh 
= w PI - 03 PI. (Bll) 

Similarly in Eq. (B5), the A-independence of J[ pl, 
E,[ p], and 7”[ p] leads to Eq. (201. 

dVe3 PI dVch[ PI 1 dT,“[ ~1 p= p= --~ 
dh dh A dA 

1 dT”[ ~1 --~ 
A dh ’ Pl2) 

Then, subtracting Eq. (B 111 from Eq. (B6) yields Eq. 

(19X 

Oe:[ PI = v,F[ PI. W) 
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