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Abstract 

Pad6 approximants are used to represent the total correlation functional E~[ p] and its kinetic-energy component T~[ p], 
where the parameter h is the electron-electron interaction coupling constant within the adiabatic connection formalism. The 
exact relations between E~[ p] and T~[ p] are employed to generate the associated T¢~[ p] functional from its parent Eta[ p] 
functional. Numerical results (with A = 1) on the first 18 neutral atoms confirm the soundness of this procedure. It is proved 
that no local representations of these functionals can be exact for the nonuniform electron gas. However, it is still useful to 
design local functionals that are as accurate as possible. 

1. Introduct ion 

Based on density scaling, coordinate scaling, ho- 
mogeneity, and locality properties of density func- 
tionals, several studies on the correlation-energy den- 
sity functional Ec[ p] and its kinetic-energy compo- 
nent T~[ p] have been recently undertaken [1] J[2] 2 
[3]. Within the adiabatic connection formalism (see, 
e.g. [5]), the correlation functional Eca[ p] is com- 
monly defined as [6] 

st[ o] = (1/,)r?[ o] + v?[ o1, (1)  

In this paper (according to the authors), the 4-term fitted 
results should be interpreted as assuming all species are in a large 
box of finite volume. The same for the 4-term results in Ref. [2]. 
For more discussion on this matter, see Ref. [3]. 

2 In this paper, according to Ref. [4] the value of the parameter 
K of Eq. (12) should be 2.8350, instead of 1.0910. Some of their 
results might be affected by this error. 

whose kinetic-energy component Tc*[ p] and poten- 
tial-energy component Vc*[ p] are 

Tca[ p]  = (ap'A[~l~a) - (~a=017~l~,~=0), 
VcA[ p ]  = (11~A[~e[1/'t h )  --  ( ~ a = 0 [ W e e l l ~ A = 0 )  . (2) 

Here, the antisymmetric N-electron wavefunction ~ a 
generates an N-representable electron density p(r) 
and minimizes the generalized Hohenberg-Kohn 
functional (~ l /~  + AVee[alt ) for a specific inter-elec- 
tron interaction coupling constant h (which must be 
set equal to 1 for real systems with a full Coulomb 
interaction). 

It has been shown that if E~[ p] can be expanded 
as a full Taylor series in powers of h, in the vicinity 
of h = 0 [1,3,7,8], 

1 
E~*[ Pl  = E ~.1 a~[ P l  AN, (3) 

n = l  • 

then, the A~[ p] are homogeneous functionals of  
degree (1 - n) in coordinate scaling [1,9] 

A.[  p , ]  = 7 ' - " A . [  p ] ,  (4)  

0009-2614/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved. 
PH S 0 0 0 9 - 2 6 1  4 ( 9 7 ) 0 0 1  75 -9 



Y.A. Wang~Chemical Physics Letters 268 (1997) 76-85 77 

where the uniformly scaled density is defined as 
[6,10] 

pr( r) = V3p( Tr) . (5) 

The corresponding Taylor series expansion for Tc*[ p] 
is [11, 

- - 1  

T¢*[p]= E (n_I)-----------~A.[P] x"+' (6) 
n = l  

Under an assumption of locality, the A.[ p] are 
homogeneous functionals of degree ( 4 -  n)/3 in 
density scaling [1], 

r) t~A,[ p]~ = 4 -  n A,[ p ] .  (7) 
( P( 8p ( r )  / 3 

Consequently [1], Eca[ p] and To*[ p] are combina- 
tions of local functionals homogeneous in p(r) of 
degrees: 1, 2 /3 ,  1/3,  0, - 1/3, .. •,  

4 - n  

E ~ [ p ] =  E a. p(r A". (8) 
n = l  

4 - - n  

TcX[p]= Y'. (-n)a~ p(r) 3 A.+,.  (9) 
n = l  

where {a.} are undetermined expansion coefficients 
and (p(r) k) are simple integrals of p(r) k. Numeri- 
cal results for atomic and molecular species based on 
the first three terms in the local Taylor series expan- 
sion are encouraging [1.2]. albeit the Kohn-Sham 
(KS) correlation potential [11] 

aec[p] 
re(r) (10) ap(r) 
derived from Eq. (8) diverges asymptotically [3], 

lim Iv¢(r)l = 2 ,  (11) 
r - ~ a ¢  

for Ec[ p] expansions of any finite length longer than 
1. 

In an effort to diffuse this divergence problem of 
the Taylor series expansion of E)[ p] in terms of 
local homogeneous functionals, Wang et al. [3] intro- 
duced general Laurent series expansions in powers 
of A centered at A = 0, 

oc 

E~*[ o]  = E B . [  p],~", (12) 

and 
az 

TcX[ p]  = )-". ( -n)B.[ p]A "+' , (13) 

where the B.[ p] possess the same scaling properties 
as the A.[ p] displayed in Eqs. (4) and (7) under the 
same conditions [3]. If the Bn[ p] are local, the 
correct long-range behavior of vc(r) [12,13] requires 
a complete truncation of the positive terms (the 
Taylor-like series), and the final surviving Laurent 
series are combinations of local functionals homoge- 
neous in p(r)  of degrees: 4 /3 ,  5 /3 ,  2, 7 /3 ,  . . .  
[3], 

p] = 

rc*[pl= 

where 

0 ~o 

E B . [ P ]  A"= E C . [ p ] A - " ,  (14) 
- - ~  n = 0  

0 

E ( - n l B . [ p ]  *"+'= Y'. nC.[plx'-", 
- - a c  n = [ 

(15) 

4 + n  

and {c.} are undetermined coefficients. With this 
new truncated Laurent series, the short-range and 
long-range properties of re(r) appear to be better 
represented than by the Taylor series expansion in 
Eq. (8). Although there are no clear indications as to 
when such Laurent series are going to terminate and 
as to how fast they converge, numerical results (with 
only the first few terms of the truncated Laurent 
series) on the first-eighteen neutral atoms are quite 
satisfactory [3]. 

The Taylor series and the Laurent series are not 
free of other difficulties [1,3]. For example, the 
Taylor series expansion as shown in Eq. (8) does not 
satisfy the iow-T limit coordinate scaling conditions 
[10], such as 

lim T-lEe[ p~] = finite, (17) 
3,--*0 

while interestingly, the truncated Laurent series ex- 
pansion as shown in Eq. (14) does not agree with the 
high-T limit coordinate scaling properties [10], in- 
cluding 

lim Ec[ p~ ] > - oc. (18) 
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The complementary scaling properties satisfied by 
the Taylor series, Eq. (8), and the truncated Laurent 
series, Eq. (14), argue for a general attractiveness of  
the full Laurent series expansions, Eqs. (12) and (13) 
[3]. However,  this contradicts the necessity of  com- 
pletely deleting the Taylor-like component from the 
full Laurent series. In addition, the truncated Laurent 
series, Eqs. (14) and (15), cannot recover their de- 
fined null value at h = 0 [12,13]: E{ =° = Tc *=° = 0. 

In order to reconcile the various inconsistencies 
mentioned above, Pad~ approximants [14] may be 
used to re-express all the series. In consequence, the 
Taylor series expansion and the truncated Laurent 
series expansion become the high-density limit and 
the low-density limit, respectively, of  the functionals 
defined with Pad6 approximants. More importantly, 
the coordinate scaling properties of  the low-3, limit 
and the high-3, limit [10] can be both satisfied, 
without either sacrificing the correct asymptotic be- 
havior of  vc(r) or missing the defined null value at 
h = 0 .  

Table 1 
Restrictions on the highest power of the numerator (K) and the 
highest power of the denominator (M) of the Pad6 approximants 
defined in Eq. (20). 

Desired condition a Restriction on {K,M} 

lim Eca[ p] = 0 any {K,M} 
p~0 
lim Tea[ p] = 0 any {K,M} 

.o~0 
lira Eta[ p]= finite( < 0) K > M - 4  

lira T~X[ p] = finite( > 0) K > M - 4  

lim v~a(r) = 0 any {K,M} 
p~0 
lim veX(r) = cons. K = M - 1 

EcX=°[ p]= 0 K < M  
Tc~=°[p]=O K < M + I  
lim EcX[ py ] = cons. K = M - 1 

T~m 
overall K = M - 1 

a See for example, Refs. [10], [12] and [13]. 

2. T h e o r e t i c a l  f o r m u l a t i o n  

For the sake of  later use, one defines two new 
variables 

~ ( r )  = p ( r )  1/3 , X =  ~ ( r ) / * ,  ( 19 )  

• and Pad~ approximants [ 14] 

1 + b l x + b 2 x 2 +  . . .  + b r x  K 
P~t = [ K , M  ] = 

1 -]-ClX-l-c2x2-] - "'" "}'CM XM 

K 

b k x* 

_ ,=o (20)  
M 
E CmXm 

m=0 

Here, {b l, . - - ,  b r ,  c l, . - - ,  c M} are coefficients 
yet to be determined, and both of the denominator 
and the numerator are polynomials of ascending 
power series. Then, a straightforward but laborious 
derivation [15] reveals that correlation-energy den- 
sity functionals Ec~[ p] from the general Pad~ ap- 
proximants P ~ ,  

Ech[ p ] = - - a ( [ ~ 4 p K ) ,  (21)  

where {a} is a positive coefficient, are legitimate 
solutions of  the exact integro-differential relation for 
Ec*[ p]  [6] 

8ec*[ p 1./ dec*[p] p ( r ) l ( r - V )  , 
ec*[ Pl = *  p(r) / 

(22) 

within a locality assumption. However,  according to 
further analysis, K has to be ( M -  1) in order to 
meet all the preconditions displayed in Table 1. 

With a little more manipulation, one can readily 
show that the defined representation, 

E{[ p] = - a (  fl4pMM-I), (23) 

does indeed reproduce the Taylor series, Eq. (8), at 
the high-density limit, and the truncated Laurent 
series, Eq. (14), at the low-density limit. Except for 
the case of  M = 1, Eq. (23) yields the full Laurent 
series, Eq. (12), for intermediate density. 

A direct utilization of the exact relation between 
Eta[ p] and Tea[ p]  [1,16], 

T e a [ P ] =  _ A 2 d  p ,  E.a[ ] d E { [ p ]  (24) 
dA d ( 1 / A )  ' 
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yields a corresponding equation for/'ca[ p]: 

TcX[P] =a , 85 E E rnbkc,,, xk+''-' 
k=0 m=l 

_ ~_~ kbkcmXk+m-I 
k=l m=O ]J 

× E cmx m , (25 )  
m=0 

which stems from the Pad~ approximant p2~M-O. 
The same result can also be achieved by using the 
coordinate scaling relation 

(0Ec~[P'])  , (26) 
V [ p ]  = - A E ) [  p] + a Or ~=, 

which is the generalized version (for arbitrary posi- 
tive A values) of the original Levy-Perdew equation 
(with A = 1) [6]. 

3. Results and discussion 

The effectiveness of the local functionals with 
Pad6 approximants may be tested with M = 1 and 2. 
The simplest functionals of the form shown in Eqs. 
(23) and (25) are the Wigner-type correlation func- 
tional [17-20] 3 and its associated kinetic-energy 
correlation functional: 

E~X[ P]wigner= E~a[ p][o,i]= --a(,841~x) , (27) 

( I t  T~*[ p]Wigner = Tea[ P][0,,l = ab ,85 
(1  2bx) 2 

(28) 

Increasing M by 1, one obtains the general P~ 
representations: 

Eca[ P][ I ,2 ]  = _a( ,84  1 + dx \ 
1 + bx + cx2/ '  (29) 

3 The conventional E c values of eight closed shell atomic 
systems (He, Li ÷, Be 2+, Be, B ÷, Ne, Mg, and Ar) are from Ref. 
[211. 

a/,8 s ( b -  d) + 2cx + cdx2\ I L"[ P i l l , 2 ]  ~-- (l+bx+cx2) 2 /" (30) 

Here, {a, b, c, d} are undetermined coefficients. If 
the integrands and - G ( r )  are assumed to be every- 
where positive and continuous, it is necessary for all 
the coefficients and (b-d)  to be positive. 

For the sake of comparison, the Taylor series 
expansions, Eqs. (8) and (9), with the first three 
terms [1,2] 

3 

Ec[P]Taylor~ E A, , [p]  
n=l  

=a(133)+b(,82)+c(,8), (31) 
3 

Tc[P]Tay,or~- • ( - n ) a , , [ p ] = - a ( , 8  3) 
n=l  

- 2 b ( , 8 2 )  _ 3 c ( , 8 ) ,  ( 32 )  

have been reparameterized, and the truncated Lau- 
rent series expansions, Eqs. (14) and (15) [3], with 
the first five terms 

ec[  P ]Laurent 

4 

-~ E C,,[P]=a(,8 4) 
n=0 

+ b ( , 8 5 )  + c(,86) - I - d ( , 8 7 )  "1- e ( ,88) ,  

(33) 

4 

Tc[ P]Laurent ~ E nCn[ P] = b ( ~ 5 )  
n=O 

"l'- 2 C ( , 8 6 )  ..}_ 3 d ( , 8 7 )  --I-- 4 e ( , 8 8 ) ,  

(34) 

are presented. Here, {a, b, c, d, e} are undetermined 
coefficients. 

Least-square fitting is employed to determine the 
coefficients. The data for the conventional E c of the 
first eighteen atoms were taken from the latest ab 
initio calculation by Chakravorty and Davidson [22]; 
for the Density Functional Theory (DFT) E c, from a 
recent optimized-effective-potential (OEP) calcula- 
tion by Grabo and Gross [23]; and for T c, from 
Morrison and Zhao [24]. Due to its peculiar value, 
the T c value for Ar was excluded from the T c data 
set used in the fitting. These data are enumerated in 
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Table 2 

Least-square-fitted coefficients a.b 
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(Scheme)Type a b c d e 

(Ec°n)Taylo r -- 0.5966 × 10- 
(~DFT'I - 0 . 6 1 0 5  × lO- " ~ c  "Taylor 
( E  c + Tc)Taylo r - -0 .5210 × 10- 
(EcC°n)Lauren t -- 0.4433 X 10- 
( Ec DFT)L . . . . .  t - 0.3615 )< 10 - 

(E¢ + Tc)Laurem --0.6398 X 10- 
(EcC°n)wigne r 0.5406 × 10- 

DFT 
(Ec )wigner 0.4762 × 10- 

( E  c + Tc)wigne r 0.1010 
(E~°")I~,21 0.6228 × 10- 
( E  DFT'I 0.4717 )< 10- c J[l,21 
(E¢ + Tc)IL21 0.1659 

0.1781 × 10-~ - 0 . 5 7 2 2  X 10 -3  

0.1837 X 10- ~ - 0 . 6 1 2 3  )< 10 -3  

0.1106)< 10 -~ - 0 . 3 1 8 1  × 10 -3  

0.1942)< 10 - t  - 0 . 6 0 9 4 ) <  10 -2  0 . 8 1 7 9 ×  10 -3  

0 . 7 9 7 6 ×  10 -2 - 0 . 2 1 2 9 ) <  10 -2  0 . 3 2 9 5 ×  10 -3  

0.2348)< 10 ~ - 0 . 3 0 1 8 ×  10 -2  0.1507)< 10 -3  

0.6200 

0.4580 

1.6559 

1.2944 0.2047 0.3342 

0.6041 0.7636 × 10-  ~ 0.1638 
3.9971 0 . 3 2 2 4 ×  10 -3  0 . 8 8 5 4 ×  10-= 

-0 .3531  X 10 -4  

-0 .1591  )< 10 -4  

- 0 . 2 7 2 0  × 10 -5  

a All values in atomic units. E - n indicates a number to be multiplied by 10 -n.  

b See text for functional forms in terms of  the parameters {a, b, c, d, e}. 

Tables 4-6.  Densities were taken as the accurate 
RHF results of Clementi and Roetti [4]. 

Three types of least-square fitting have been per- 
formed for these two data sets. The E c°n and E oFT 

schemes fit all the above Ec[ p] formulas to the 
conventional E c data set and the DFT E c data set, 
respectively; and the (Ec + T c) scheme simultane- 
ously fits these E¢[ p] and T~[ p] formulas to the 
DFT E c data set and the T~ data set. Results are 
collected in Tables 2-6: Table 2 displays the fitted 
coefficients, Table 3 compares the various 
parametrizations of the E~[ P]wigner  f u n c t i o n a l  [17- 
20] and Tables 4 -6  exhibit the fitted Ec and T~ 
values. Table 2 shows that with some minor devia- 
tions in the expansion coefficients, the reparameter- 
ized 3-term Taylor series expansions are essentially 

the same as before [1,2]. Figs. 1 and 2 depict the 
results from the functionals with the Pad6 approxi- 
mant P~. 

The first impression on viewing Tables 4 and 5 is 
the closeness of the DFF E c data and the conven- 
tional E c data, whose differences are less than 0.023 
E h, despite the distinction in their definitions. Conse- 
quently, the fitted E c°" and E DFT data are also quite 
similar. However, a close scrutiny of the mean abso- 
lute deviations reveals that the E DFT scheme per- 
forms much better than the E c°" scheme, except for 
the case with the Taylor series expansion. This is 
more likely due to the inner coherence between the 
definition of the DFT E c and its data [23], although 
the conventional E c data by Chakravorty and David- 
son are much more reliable [22] and numerically 

Table 3 

Different parametrizations of the Wigner-type E c functional a.b 

Parameter Wigner  c McWeeny a Brual-Rothste in  e S i i l e -Nagy  g (EcDFT)wigner (Ecc°n)wigner 

a 0.7093 0.3394 0.04665 0.04398 0.04762 0.05406 
b 12.5735 3.2763 0.4576 0.3527 0.4580 0.6200 

a All values in atomic units. 

b All the different formulas are brought into the same form as Eq. (27), in terms of  the parameters {a, b}. 
¢ From Ref. [17]. 
d From Ref. [I 8]. 
e From Ref. [19]. 

g From Ref. [20]. 
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0 . 0 0  ; 

- 0 . 1 0  

- 0 . 2 0  

- 0 . 3 0  

=. 
,~m - o . 4 o  

- o , 5 o  

- 0 . 6 0  

- 0 . 7 0  

- 0 . 8 0  • ' " ' " ' ' ' " ' ' ' ' ' ' ' " ' ' 

0 2 4 6 , 8 10 12 14 16 18 2 0  

z 

( E  DFT~ r e s u l t s  ( s o l i d  l i n e )  f o r  t he  F i g .  I .  L e a s t - s q u a r e - f i t t e d  , c ,[~.21 

D F F  E c d a t a  se t  ( • )  f o r  t h e  f i r s t  t w o - r o w  n e u t r a l  a t o m s .  

--. Y, o ~  

s 
au" = ~ E c 

2 4 6 8 10 12 14 15 18  2 0  

z 

F i g .  2 .  L e a s t - s q u a r e - f i t t e d  ( E  c + Tc)[I.21 r e s u l t s  ( s o l i d  l i n e )  f o r  t h e  

D F T  E c a n d  T c d a t a  s e t s  ( [ ] )  f o r  t h e  f i r s t  t w o - r o w  n e u t r a l  a t o m s .  

0 .75  

0 . 5 0  

0 . 2 5  

0 .00  

- 0 . 2 5  

- 0 . 5 0  

- 0 . 7 5  

close to the former ones. Therefore, the results of the 
(E  c + T~) scheme will be reported here only for the 
DFF E c data set. 

Also from Tables 4-6,  one sees that the Taylor 
series expansions, Eqs. (31) and (32), and the trun- 
cated Laurent series expansions, Eqs. (33) and (34), 
are the poorest and the best, respectively, among the 
four types of local functionals discussed heretofore. 
Even worse, the Taylor series expansions do not 

predict a smoothly increasing trend in the T c values 
as Z becomes larger [1]. For example, the trend of 
the T c values from Li to B, and from Na to AI is 
unreasonable. Additionally, the negative T~ value for 
H is not acceptable. As was found previously [3], the 
truncated Laurent series expansion Eq. (34) is an 
especially good approximation for the To[ p] func- 
tional, with a mean absolute deviation of only 0.0087 

E h • 

T a b l e  4 

F i t t e d  E c v a l u e s  ( v i a  t h e  Ec  c°n s c h e m e )  c o m p a r e d  w i t h  p r e v i o u s  p u b l i s h e d  c o n - E ¢  d a t a  a.b.c 

A t o m  Z c o n - E  c ( Ec c°n )Taylor ( Ec°n )L . . . . . .  ( Ec c°n )w igner ( Ec c°n )[1,2] 

H 1 0 . 0 0 0 0  - 0 . 0 0 4 7  - 0 . 0 1 1 0  - 0 . 0 1 2 9  - 0 . 0 1 3 7  

H e  2 - 0 . 0 4 2 0  - 0 . 0 4 9 0  - 0 . 0 3 9 8  - 0 . 0 4 4 9  - 0 . 0 4 5 9  

L i  3 - 0 . 0 4 5 3  - 0 . 0 5 9 3  - 0 . 0 6 1 6  - 0 . 0 6 7 7  - 0 . 0 6 8 3  

B e  4 - 0 . 0 9 4 4  - 0 . 0 7 1 1  - 0 . 0 8 8 5  - 0 . 0 9 5 0  - 0 . 0 9 5 8  

B 5 - 0 . 1 2 4 8  - 0 . 1 1 1 8  - 0 . 1 2 1 3  - 0 . 1 2 6 8  - 0 . 1 2 8 0  

C 6 - 0 . 1 5 6 4  - 0 . 1 6 2 3  - 0 . 1 6 1 2  - 0 . 1 6 4 5  - 0 . 1 6 6 0  

N 7 - 0 . 1 8 8 3  - 0 . 2 1 8 3  - 0 . 2 0 7 4  - 0 . 2 0 7 6  - 0 . 2 0 9 0  

O 8 - 0 . 2 5 8 0  - 0 . 2 7 6 0  - 0 . 2 5 7 3  - 0 . 2 5 4 1  - 0 . 2 5 5 2  

F 9 - 0 . 3 2 4 8  - 0 . 3 3 4 9  - 0 . 3 1 1 0  - 0 . 3 0 5 1  - 0 . 3 0 5 5  

N e  10  - 0 . 3 9 1 2  - 0 . 3 9 5 1  - 0 . 3 6 7 4  - 0 . 3 6 0 3  - 0 . 3 5 9 6  

N a  I1 - 0 . 3 9 6 5  - 0 . 4 1 4 3  - 0 . 4 0 5 4  - 0 . 3 9 7 5  - 0 . 3 9 6 2  

M g  12  - 0 . 4 3 9 4  - 0 . 4 2 5 2  - 0 . 4 4 2 4  - 0 . 4 3 7 0  - 0 . 4 3 5 6  

A1 13 - 0 . 4 7 0 6  - 0 . 4 5 7 4  - 0 . 4 7 6 6  - 0 . 4 7 6 7  - 0 . 4 7 5 4  

S i  14  - 0 . 5 0 5 7  - 0 . 4 9 9 9  - 0 . 5 1 2 0  - 0 . 5 1 9 2  - 0 . 5 1 8 3  

P 15 - 0 . 5 4 0 9  - 0 . 5 5 0 9  - 0 . 5 5 0 8  - 0 . 5 6 4 4  - 0 . 5 6 4 1  

S 16 - 0 . 6 0 6 2  - 0 . 6 0 1 1  - 0 . 5 9 6 2  - 0 . 6 1 1 1  - 0 . 6 1 1 3  

CI  17  - 0 . 6 6 8 3  - 0 . 6 6 0 0  - 0 . 6 5 4 9  - 0 . 6 6 0 5  - 0 . 6 6 1 2  

A r  18 - 0 . 7 2 6 1  - 0 . 7 1 9 4  - 0 . 7 3 5 1  - 0 . 7 1 2 5  - 0 . 7 1 3 5  

6 0 . 0 1 1 7  0 . 0 0 9 3  0 . 0 1 0 8  0 . 0 1 1 0  

a A l l  v a l u e s  in  E h. 

C o n - E  c d a t a  f r o m  R e f .  [22 ] .  

c 6 d e n o t e s  t h e  m e a n  a b s o l u t e  d e v i a t i o n  f r o m  c o r r e s p o n d i n g  l i t e r a t u r e  v a l u e s .  
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T a b l e  5 

F i t t ed  E c va lue s  
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( v i a  the E ~  FT s c h e m e )  c o m p a r e d  wi th  p r ev ious  pub l i shed  D F T - E  c da t a  a,b,c 

A t o m  Z D F T - E  c DFT DFT DFT 
( E c  )L . . . . .  t ( E c  )Wigner (Ed )Taylor ( EcDFT){ 1.2 } 

H 1 0 . 0 0 0 0  - 0 . 0 0 5 6  - 0 . 0 0 9 7  - 0 . 0 1 1 9  - 0 , 0 1 1 8  

He  2 - 0 . 0 4 1 6  - 0 . 0 5 0 2  - 0 . 0 3 7 6  - 0 . 0 4 2 9  - 0 . 0 4 2 8  

Li 3 - 0 . 0 5 0 9  - 0 . 0 6 4 8  - 0 . 0 6 1 0  - 0 .0661  - 0 . 0 6 6 0  

Be  4 - 0 . 0 9 3 4  - 0 . 0 7 4 8  - 0 . 0 8 9 6  - 0 . 0 9 3 5  - 0 . 0 9 3 5  

B 5 - 0 . 1 2 8 9  - 0 . 1 1 5 7  - 0 . 1 2 2 9  - 0 . 1 2 5 4  - 0 . 1 2 5 4  

C 6 - 0 . 1 6 0 8  - 0 . 1 6 6 6  - 0 . 1 6 2 3  - 0 . 1 6 3 3  - 0 . 1 6 3 3  

N 7 - 0 , 1 8 7 9  - 0 . 2 2 3 5  - 0 . 2 0 7 4  - 0 . 2 0 6 9  - 0 . 2 0 6 9  

O 8 - 0 . 2 6 0 5  - 0 . 2 8 2 3  - 0 . 2 5 6 3  - 0 . 2 5 4 3  - 0 . 2 5 4 3  

F 9 - 0 . 3 2 1 8  - 0 . 3 4 2 4  - 0 . 3 0 9 9  - 0 . 3 0 6 8  - 0 , 3 0 6 8  

N e  10 - 0 . 3 7 5 7  - 0 . 4 0 3 8  - 0 . 3 6 7 7  - 0 . 3 6 4 0  - 0 . 3641  

N a  11 - 0 . 4 0 0 5  - 0 . 4 2 7 8  - 0 . 4 0 8 9  - 0 . 4 0 4 2  - 0 . 4 0 4 3  

M g  12 - 0 . 4 5 2 3  - 0 . 4 3 7 4  - 0 . 4 4 9 7  - 0 . 4 4 6 3  - 0 . 4 4 6 5  

AI 13 - 0 . 4 9 0 5  - 0 , 4 7 0 4  - 0 . 4 8 8 8  - 0 . 4 8 8 5  - 0 . 4 8 8 6  

Si  14 - 0 . 5 2 6 5  - 0 . 5 1 2 9  - 0 . 5 2 9 4  - 0 . 5 3 3 4  - 0 . 5 3 3 5  

P 15 - 0 . 5 5 9 4  - 0 . 5 6 4 3  - 0 . 5731  - 0 . 5 8 1 0  - 0 . 5 8 1 1  

S 16 - 0 . 6 2 8 7  - 0 . 6 1 5 2  - 0 . 6 2 1 4  - 0 . 6 3 0 2  - 0 , 6 3 0 2  

CI 17 - 0 . 6 8 9 0  - 0 . 6 7 5 2  - 0 . 6 7 8 7  - 0 . 6821  - 0 . 6 8 2 0  

A r  18 - 0 . 7 4 3 5  - 0 . 7 3 5 6  - 0 . 7 4 9 6  - 0 . 7 3 6 7  - 0 . 7 3 6 5  

8 0 . 0 1 6 0  0 . 0 0 7 3  0 . 0 0 7 9  0 . 0 0 7 9  

a Al l  va lue s  in E h. 

b D F r - E ¢  da ta  f r o m  Ref .  [23].  

c 6 deno t e s  the m e a n  abso lu t e  d e v i a t i o n  f rom c o r r e s p o n d i n g  l i t e ra tu re  va lues .  

T a b l e  6 

F i t t ed  E c and  T c va lue s  ( v i a  the ( E  c + T¢) s c h e m e )  c o m p a r e d  wi th  p r ev ious  p u b l i s h e d  D F T - E  c and  T c da t a  a'b'c 

Atom Z DFT-E c T c (Ec)Taylor (To)Taylor (Ec)L . . . . .  I (Tc)L . . . . .  t (Ec)wigner (Tc)wigner (Ec)[I,2] (Tc)[I,2} 
H 1 0 . 0 0 0 0  0 . 0 0 0  - 0 . 0 1 5 8  - 0 . 0 0 2 1  - 0 . 0 1 6 2  0 .0021  - 0 . 0 1 8 8  0 . 0 0 6 4  - 0 . 0 2 1 5  0 . 0 1 1 0  

He  2 - 0 . 0 4 1 6  0 . 0 3 7  - 0 . 0 5 9 3  0 . 0 2 4 7  - 0 . 0 5 7 8  0 . 0 1 6 6  - 0 . 0 5 6 8  0 . 0 2 8 7  - 0 . 0 5 8 2  0 .0371  

Li 3 - 0 . 0 5 0 9  0 . 0 3 8  - 0 . 0 7 3 6  0 . 0 6 3 7  - 0 . 0 8 5 7  0 . 0 3 7 7  - 0 . 0 8 0 3  0 . 0 4 4 8  - 0 . 0 8 1 4  0 . 0 5 1 7  

Be  4 - 0 . 0 9 3 4  0 . 0 7 4  - 0 . 0 9 8 6  0 . 0 3 8 8  - 0 . 1 1 5 9  0 . 0 6 4 0  - 0 . 1 1 0 4  0 . 0 6 2 5  - 0 . 1 1 2 9  0 . 0 7 0 7  

B 5 - 0 . 1 2 8 9  0 . 0 9 5  - 0 . 1 4 0 0  0 . 0 6 0 2  - 0 . 1 4 9 1  0 . 0 9 2 9  - 0 . 1 4 5 9  0 . 0 8 3 8  - 0 . 1 4 9 2  0 . 0 9 4 4  

C 6 - 0 . 1 6 0 8  0 . 1 2  - 0 . 1 8 7 5  0 . 0 9 3 5  - 0 . 1 8 8 0  0 . 1 2 4 2  - 0 . 1 8 7 1  0 .1101  - 0 . 1 8 9 7  0 . 1 2 2 6  

N 7 - 0 . 1 8 7 9  0 . 1 5  - 0 . 2 3 8 2  0 . 1 3 5 8  - 0 . 2 3 2 5  0 . 1 5 8 0  - 0 . 2 3 2 6  0 . 1 4 1 3  - 0 . 2 3 3 3  0 .1541  

O 8 - 0 . 2 6 0 5  0 . 1 9  - 0 . 2 8 9 3  0 , 1 8 3 5  - 0 . 2 8 0 2  0 . 1 9 3 2  - 0 . 2 7 9 8  0 . 1 7 5 6  - 0 . 2 7 8 2  0 . 1 8 6 9  

F 9 - 0 . 3 2 1 8  0 . 2 4  - 0 . 3 4 1 4  0 . 2 3 2 4  - 0 . 3 3 2 9  0 . 2 3 1 5  - 0 . 3 2 9 9  0 . 2 1 3 8  - 0 . 3 2 5 3  0 . 2 2 1 6  

Ne  10 - 0 . 3 7 5 7  0 , 3 0  - 0 .3941  0 . 2 8 3 0  - 0 . 3 8 9 6  0 . 2 7 3 4  - 0 . 3 8 2 2  0 . 2 5 5 3  - 0 . 3 7 4 4  0 . 2 5 7 9  

N a  11 - 0 . 4 0 0 5  0 .31  - 0 . 4 1 3 2  0 . 3 3 6 6  - 0 . 4 2 1 8  0 . 3 0 4 8  - 0 . 4 1 3 8  0 .2831  - 0 . 4 0 6 3  0 .2781  

M g  12 - 0 . 4 5 2 3  0 . 3 4  - 0 . 4 3 6 8  0 . 3 1 6 3  - 0 , 4 5 6 0  0 . 3 3 1 3  - 0 . 4 4 9 9  0 . 3 1 1 0  - 0 . 4 4 4 5  0 . 3 0 1 2  

AI 13 - 0 . 4 9 0 5  0 . 3 5  - 0 . 4 7 1 6  0 . 3 3 6 3  - 0 . 4 9 0 1  0 . 3 5 2 9  - 0 . 4 8 6 8  0 . 3 3 8 7  - 0 . 4 8 3 9  0 , 3 2 5 1  

Si 14 - 0 . 5 2 6 5  0 . 3 6  - 0 . 5 1 4 4  0 . 3 5 8 4  - 0 . 5 2 8 2  0 , 3 7 0 4  - 0 . 5 2 7 5  0 . 3 6 8 2  - 0 . 5 2 7 3  0 . 3 5 2 2  

P 15 - 0 . 5 5 9 4  0 .41 - 0 . 5 6 2 3  0 . 3 9 2 0  - 0 . 5 7 0 5  0 . 3 8 4 5  - 0 . 5 7 1 4  0 . 4 0 0 0  - 0 . 5 7 3 4  0 . 3 8 1 8  

S 16 - 0 . 6 2 8 7  0 . 3 9  - 0 . 6 0 9 3  0 . 4 2 7 2  - 0 . 6 1 5 7  0 . 3 9 5 6  - 0 . 6 1 6 6  0 . 4 3 3 2  - 0 , 6 2 0 6  0 . 4 1 2 6  

CI 17 - 0 . 6 8 9 0  0.41 - 0 . 6 6 1 5  0 . 4 7 5 3  - 0 , 6 6 5 6  0 . 4 0 4 9  - 0 . 6 6 4 1  0 . 4 6 8 8  - 0 . 6 6 9 7  0 . 4 4 5 2  

A r  18 - 0 . 7 4 3 5  0.21 - 0 , 7 1 3 9  0 . 5 2 3 3  - 0 . 7201  0 . 4 1 3 3  - 0 . 7 1 3 7  0 . 5 0 6 7  - 0 . 7 2 0 5  0 . 4 7 9 4  

6 0 . 0 1 9 7  0 . 0 2 1 6  0 . 0 1 8 0  0 . 0 0 8 7  0 . 0 1 6 7  0 . 0 1 9 7  0 . 0 1 6 2  0 . 0 1 7 0  

a Al l  va lue s  in E h. 

b DFT_Ec da ta  and  T c da t a  f rom Refs .  [23]  and  [24],  r e spec t i ve ly .  T h e  p r e v i o u s  p u b l i s h e d  T c v a l u e  o f  A r  has  been  e x c l u d e d  f rom the da ta  

set  due  to its a b n o r m a l  va lue .  

c 8 deno tes  the m e a n  abso lu te  dev i a t i on  f rom c o r r e s p o n d i n g  l i t e ra tu re  va lues .  
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It should also be noted that contrary to the results 
of an earlier study [2], the present Wigner-type func- 
tionais perform better than the Taylor series expan- 
sions, for both of the E c°" and E oFT schemes. This 
situation is probably due to the difference in the 
fitted parameters [2,20]. An inspection on Table 3 
verifies that the present parametrizations of the 
Wigner-type functional, especially from the Ey FT 
scheme, are most compatible with the work of Brual 
and Rothstein [19], which is the best [25] among all 
the existing ones [17-20]. 

If one ignores the results from the Taylor series 
expansion, Table 5 and Fig. 1 show that the Ec 
scheme faithfully reproduces the DFI'-E¢ data with a 
mean absolute deviation of less than 0.0080 E h for 
the remaining three types of functionals, although for 
several atoms (e.g., Li, N, and P), better theoretical 
understanding is needed. Compared to the 
Ec[ P]Laurent, both the E~[ P]Wigner and the E~[ Pill.z1 
perform comfortably well, with somewhat better re- 
suits from the latter formula. There will not be much 
benefit if the Pad~ approximants with larger M val- 
ues are used to represent Ec[ p]. 

However, as illustrated in Table 6 and Fig. 2, the 
quality of fitting (especially the E~ values for the 
first-row atoms) deteriorates once the T~ data set is 
included. In addition, as shown in Table 2, when 
going from the E c scheme to the (E c + T c) scheme, 
the fitted coefficients exhibit large changes. This is 
probably due to the fact that the T c data set is only 
reliable with two significant figures and is less reli- 
able for heavier atoms (see the fitted T~ results in 
Fig. 2) which dominate the globe minimum search- 
ing process [3]. Further studies toward improving the 
literature Ec and T c data sets are needed. 

4. Properties of local functionals 

Table 1 also shows that the re(r) originating from 
Eq. (23) will vanish asymptotically, 

lim Vc(r ) = 0 ,  (35) 
r --~ ~c 

and E~[ p] and Tc~[ p] recover their defined value at 
A = 0. In opposite to an earlier claim [25], besides 
holding [25,26] most of the uniform coordinate scal- 
ing properties [10], the E~[ p] defined in Eq. (23) 

indeed satisfies few nonuniform coordinate scaling 
conditions [27-29], including 

lim Ec[ pX] = 0. (36) 
a ' ' *  0 

Here the nonuniformly scaled density is defined as 

p~,' ( r ) = a p ( a x , y , z ) .  (37) 

Another important conclusion can be drawn from 
Table 1: vc(r) will become a constant at high-density 
limit (the same for different systems). This is satis- 
fied by neither the Taylor series expansion nor the 
Laurent series expansion. Moreover, the fact that 
re(r) derived from Eq. (31) or 33 is not single-sig- 
ned may cause trouble if one tries to plug it into the 
KS effective potential [11] and to solve the KS 
equation [11] self-consistently. In contrast, the func- 
tionals with Pad6 approximants will not suffer from 
this problem as long as all the coefficients, as listed 
in Table 2, are positive. 

More interestingly, it can be easily shown [14] 
that the truncated Laurent series expansions, Eqs. 
(14) and (15), and the Taylor series expansions, Eqs. 
(8) and (9), are actual functional expansions [20] (in 
terms of homogeneous functionals ( f l4x~)  and 
( fl 4x-") ,  respectively) of the local functionals, Eqs. 
(23) and (25), with the Pad~ approximants. The 
above-stated arguments imply strongly that a combi- 
nation of finite terms of such a homogeneous func- 
tional expansion will lose many merits (e.g., the 
coordinate scaling properties) of the original inho- 
mogeneous functional. For instance, Eqs. (14) and 
(15) become singular at h = 0 [3]. 

On the other hand, the good performance of these 
local functionals with Pad~ approximants should not 
make one over-optimistic about their correctness. 
Not long ago, Levy and Ou-Yang [27,28] showed 
that the local-density approximation to the Ec[ p] 
functional is independent of the direction of the 
nonuniform coordinate scaling in Eq. (37), while the 
exact Ec[ p] functional might not be so in general. 
However, as shown in Eq. (36), this statement does 
not preclude local functionals satisfying some of the 
nonuniform coordinate scaling conditions [29]. The 
following general theorem may help settle this issue. 

Theorem: For the nonuniform electron gas, the 
exact Ec[ p] functional cannot be a local functional 
nor a product [30] of local functionals, if the local 
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functional is defined as < f (p ) ) ,  where f ( p )  is a 
suitable function of p(r) ,  without any explicit de- 
pendence on r and the gradients (of any order) of 
p(r). 

Proof: With the nonuniformly scaled density is 
defined as [29] 

p[~'~Y( r )  : ot~p( a x , ~  y , z )  , ( 3 8 )  

one has the identity for the local functional 

[f(a~P)l (39) <f( 
On setting f to l/c~, one then has an invariant 

( f (  pD",Y/~ ))  = ( f ( p ) ) ,  (40) 

for the local functional. Thus, the exact nonuniform 
coordinate scaling conditions [29] 

Ec[ p:,y o ] [ - I  lim E¢ pD~/<~ = lira 
ot~0 a-*O Ot 

= lim Ec[ po~,Y/~] 
ot ---~ ~c 

x y  = lira aEc[ P~t l /~r ]  = 0  (41) 

will never be satisfied by such a local functional 
with the invariance property. Similar conclusions 
hold for the product of local functionals [30]. There- 
fore, local functionals and the products of local 
functionals cannot be exact [QED]. One can further 
show that any functional (including product) of the 
basic form ( f(p,  r. Vp)) cannot be the correct 
Ec[ p] functional either. Here, the function f ( p ,  
r. Vp) does not contain higher-order gradients of 
p(r). 

Of course, the exactness of the local-density ap- 
proximation for the uniform electron gas is well 
known [12,13]. The high- and low-density limits for 
this system [31] cannot be correctly described by 
Eqs. (21) and (23), and the exact E~ and T~ data of 
the uniform electron gas were also extracted from 
local and gradient-corrected density functionals [32]. 

Nonetheless, one should not be too pessimistic 
about the performance of the local functionals. Even 
though local functionals can never be exact for the 
nonuniform electron gas, they can be designed to be 
quite accurate as shown by this work and previous 
works [1-3,30,33-35]. There is a good feeling about 
the simplicity of the functional forms proposed in 

this work, and they can serve as the seeds to generate 
more accurate and rational nonlocal functionals 
[25,26,34,36]. Based upon past experience [2,35], it 
is reasonable to hope that such functionals will yield 
satisfactory results in molecular applications. 
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The following corrections to the above-mentioned article have to be made: 
(1) On page 76, in footnote 2, "Ref. [4]" should read "Ref. [20]". 
(2) On page 79, footnote 3 is only directed to Ref. [20], not for Refs. [17-20] as published. 
(3) On page 80, in footnote a of Table 2, " E  - n indicates a number to be multiplied by 10 -n ' '  should be 

eliminated, since the numbers are already in this format in the final publication. 
(4) On page 83, in the 6th line after Eq. (37), "Eq. (31) or 33" should read "Eq. (31) or (33)". 
(5) On page 83, in the 16th line after Eq. (37), "[20]" should be "[30]". 
(6) Some references can be updated: 
[3] Y.A. Wang, S. Liu, R.G. Parr, Chem. Phys. Lett. 267 (1997) 14. 
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