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Abstract: Since the early 1980’s, there have been numerous attempts to generalize the
variational density domain of the Hohenberg-Kohn universal density functional to unnor-
malized densities. Recently, several papers by Lindgren and Salomonson [Phys. Rev. A
67, 056501 (2003); 70, 032509 (2004); and Adv. Quantum Chem. 43, 95 (2003)] and by
G4l [Phys. Rev. A 63, 022506 (2001); 64, 062503 (2001); J. Phys. A 35, 5899 (2002)]
appeared in the literature. We point out that all such efforts do not agree with some results
of density functional theory.
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1 Results of Lindgren and Salomonson

Many people have worked on the Hohenberg-Kohn (HK) universal density functional [1, 2, 3] in
the domain of unnormalized densities [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In particular,
Lindgren and Salomonson recently published three papers on density-functional differentiability
[4, 5, 6], whose results resemble those of Nguyen-Dang et al. [7], Bergmann and Hinze [8], G4l
[9, 10, 11], and Parr and Liu [12].

Taking Eq. (10) in their first paper in Phys. Rev. A by Lindgren and Salomonson [4]
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and Eq. (21) in the same paper [4]
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we immediately have

where po(r) is the ground-state (GS) density, Eo is the Kohn-Sham (KS) energy for N noninter-
acting electrons [2, 3], v(r) is the total KS effective potential, and T'[p] is the KS kinetic energy or
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Ts[p] in the conventional notation. Eq. (3) foretold Eq. (34) of the latest paper in Phys. Rev. A
by these two authors [6], which has been confuted recently [16].

Let us focus on Eq. (2), multiply both sides of this equation by po(r), integrate over the entire
space, and get the following result:
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or simply put: the KS kinetic energy is homogeneous in density of order 1. Similar result [16] can
be derived based upon Egs. (59) and (69) of their second paper in Adv. Quantum Chem. [5]:
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where F[p] is the HK universal density functional [1, 2, 3].

In fact, Eq. (4) is the same result first advocated by Parr and Liu [12], and then refuted by Wang
[15], Joubert [13], Chan and Handy [14], and G4l [9, 10, 11]. Interestingly, identical statements
like Egs. (3)-(5) have been proposed by Nguyen-Dang et al. [7], of Bergmann and Hinze [§8], and
of Parr and Liu [12] before, Lindgren and Salomonson just reached the same result in a different
context.

In this talk, we are going to comment on such proposals by these authors [3, 4, 5,6, 7, 8,9, 10, 11, 12]
and reveal some subtleties in their derivation.

2 Gal’s Proposal

Following some earlier efforts [3], G4l worked out an explicit way to define a functional derivative
in Hilbert space of N electrons [10], without an extension of the density domain of the universal
functional followed by a subsequent inclusion of a Lagrangian multiplier term that enforces the
normalization of the density of the stationary solution.

The idea is to separate the shape of the density from its normalization through the following
generalization of the density domain [3, 17, 10]:

N _ g(r)_ olr
P = N2 s = No(r) (6)

where positive function g(r) can be normalized to any positive real number and o(r) is the shape
function with unit normalization (o(r)) = 1. Consequently, any density functional A[p" (r)] can
be defined in terms of N and g(r):

A[p" (r)] = A[No(r)] = Alg(r), N] . (7)

It is straightforward to show that from the definition in Eq. (6) for a given p™ (r), G4l’s expression
of the functional derivative with a fixed N is well defined without any arbitrary additive constant

[10]:
1 dA[p]
R <PN(r) [5p(r) ] p:pN> : (8)

The symbol §A[p]/dnp(r) in GAl’s notation means that the density variation is such that it always
lies within the space of densities normalized to N (see Ref. [10] for more details).

dnp(r)

p=pN dp(r)
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Led by the early success [9, 10], Gél and coworker have applied this line of treatment and shown
that a first-degree homogeneous KS-type kinetic-energy functional can be defined and should be
utilized in place of the conventional KS kinetic-energy functional [11], echoing the similar results
advocated by Nguyen-Dang et al. [7], Bergmann and Hinze [8], Parr and Liu [12], and Lindgren
and Salomonson [4, 5, 6].

It seems that Gal’s proposal should be the canonical version to be adopted by the entire DFT
community, provided that the definition in Eq. (6) is unique and genuine. Unfortunately, such an
assessment, cannot be substantiated, not only because G&l’s proposal is in direct conflict with the
latest results by Zahariev and Wang [16], but also because the definition in Eq. (6) is, in fact, not
unique and genuine. With a little bit further generalization of the definition in Eq. (6), we write
the normalized density as

m
pN,m(r) ) ( N )1+(m 1)0nN (g(x)) _ g(r) (ﬁ) 7 if (gr))=N ; ©)
{g(x) pNir) = pN(r), if (g(r)) #N

Here, dn (4(r)) is the Kroneckner delta, and m can be any real number. It is obvious that Eq.
(9) coincides with Eq. (6) numerically: p™'™(r) = p™(r), but A[p™N:™(r)] and A[p" (r)] do have
different Géteaux functional derivatives at fixed N.
Because of the directional nature of the Gateaux differential, the density variation, once chosen,
will not change its shape during the entire variational path. Moreover, if the variation dg(r) does
not change the normalization of g(r), say {(dg(r)) = 0, the normalization of g(r,e) = g(r) + €dg(r)
will remain the same throughout the entire variational process. Thus, for the set {g(r,e)|g(r,e) =
g(r) +edg(r), (g(r,e)) # N}, the Gateaux functional derivative of a general functional A[p™"™(r)]
will be identical to that of A[p™ (r)]. However, for the set {g(r,&)|g(r,e) = g(r) +edg(r), {g(r,e)) =
N}, the Gateaux functional derivative of a general functional A[p™>™(r)] can be shown to be

6A[p] _ 04p] _m [ N [IAlR]
dnp(r) p=pN ) by N <p (r) [5P(r)]p:pzv> ) (10)

which is different from that of A[p" (r)] shown in Eq. (8). Just like that Eq. (9) is a generalization
of Eq. (6), Eq. (8) becomes a special case of Eq. (10).

Moreover, because m is an arbitrary real number, Eq. (10) restores the ambiguity (of an arbitrary
additive constant) associated with the Géateaux functional derivative of a general functional in
Hilbert space at a fixed N. It now becoms self-evident that the only physically meaningful way to
resolve this ambiguity is through the extension based upon the statistical ensemble in Fock space
and the key to unlock this ambiguity is by the careful inspection of the chemical potential at a
fixed integral N [16].

3 Conclusions

In conclusion, among the numerous attempts to generalize the variational density domain of the
HK universal density functional to unnormalized densities, the latest proposal by Lindgren and
Salomonson [4, 5, 6] suffers from the same logical flaw of earlier works by Nguyen-Dang et al. [7],
Bergmann and Hinze [8], and Parr and Liu [12]. G&l’s proposal [9, 10, 11] is interesting in its
own right, but the definition of the normalized density in terms of well-behaved positive functions
[3, 17] is neither unique nor genuine, and hence should not be adopted in general.
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