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Abstract: Linear-scaling orbital-free density functional theory (OF-DFT) is capable of cal-
culating properties of large systems of thousands of atoms at quantum mechanical level.
The major obstacles of OF-DFT lie in the computation of the kinetic energy and the
nuclear-electron interaction energy. The latest linear-response based kinetic energy den-
sity functional can treat metallic materials in OF-DFT almost as accurate as Kohn-Sham
(KS) DFT; however, the present best OF-DFT results for covalent materials still possess
large unacceptable errors. We have developed a new linear-scaling method, called orbital-
corrected OF-DFT (OO-DFT), to improve OF-DFT by solving the KS equations under a
fixed KS effective potential, which is constructed from the electron density obtained from
OF-DFT calculations. For covalent materials, OO-DFT corrects errors in OF-DFT with
only one iteration of solving the KS equations. Our work paves the way for the general
applications of OF-DFT on large systems.
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1 Introduction

In the original Hohenberg-Kohn theorems of density functional theory (DFT) [1], the total elec-
tronic energy of the system is formulated purely as a functional of the electron density p(r):

E,[p] = T,[o] + Bulp] + Bxclo] + / p()one (r)dr . (1)

Here, vy, is the nuclear-electron Coulombic attraction potential, T is the electronic kinetic energy
of a noninteracting system that has the same electron density as the interacting system, Ey is the
classical Hartree electron-electron Coulombic repulsion energy, and Ey. is the exchange-correlation
energy. One could calculate the ground-state density and other properties not explicitly dependent
on the many-body wave function by directly minimizing the above total electronic energy functional
under the constraint that p(r) is properly normalized to N, the number of electrons in the system.
This leads to the following Thomas-Fermi-Hohenberg-Kohn equation [2],

0Ey[p] _ 0Tslp) | 6Eulp] | 6Exc[p]
op(r)  dp(r)  dp(r) ~ dp(r)
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where p is the Lagrange multiplier that guarantees the correct normalization of the electron density
during the minimization of the total energy, E,[p]. Eq. (2) can be solved in a nearly linear-scaling
fashion. This constitutes the essence of orbital-free (OF) DFT [2], which has been used to study
the dynamics of several thousand atoms near a metallic grain boundary [3] and nanoindentation in
a multiscale model [4]. Such efforts demonstrate the power and efficiency of this OF-DFT method.
On the other hand, the drawbacks of OF-DFT lie in the two necessary approximations for the
kinetic energy and the nuclear-electron interaction [2]. The former relies on the kinetic energy
density functional (KEDF), while the latter depends on the local pseudopotentials (LPSs). Re-
cently, first-principles LPSs derived from a bulk environment (BLPSs) were shown to be quite
accurate for treating covalent materials in KS-DFT [5]. The latest linear-response based KEDF
can treat metallic materials in OF-DFT almost as accurate as KS-DFT [6]. However, the appli-
cations of OF-DFT on covalent materials using the combination of the above KEDF and BLPSs
normally exhibit large errors, which were attributed mainly to the KEDF [7].

2 Orbital-Corrected OF-DFT (OO-DFT) Method

To remedy the drawbacks of OF-DFT in its current implementation, we have developed the fol-
lowing method First, we solve Eq. (2) and obtain por(r). Then, we construct the KS effective
potential vX8[por]:

U(I;fs [pOF] = UH[pOF] + ch[POF] + Une - (3)

Here, the interaction potential between nuclei and electrons, vye, could be modeled either by a LPS
or by a nonlocal pseudopotential (NLPS), with the latter being ubiquitously exploited in KS-DFT.
Next, we solve the KS equations under the fixed effective potential, vgﬁs [porF],

——V2+U Plpor] | i(r) = &di(r) (4)
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and obtain p(r) within one non-self-consistent iteration,
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where €; and f; are the eigenvalue and occupation number of the ith KS orbital 5, respectively.
Finally, we use the following Hohenberg-Kohn-Sham (HKS) functional to calculate the total elec-
tronic energy

ETKS[5] = Byp] + Bee[d] + Z fi€i — / ) (vi[por] + vxe[por])dr . (6)

We name the above scheme orbital-corrected OF-DFT (OO-DFT) method. Note that in the self-
consistent KS-DFT, the number of iterations required to converge the calculation increases with the
size of the system [8]. If at each iteration, the computational cost is O(N), where N is a measure
of the system size, the overall computational cost cannot be truly linear due to the requirement of
self-consistency [8]. Since OO-DFT involves only one non-self-consistent iteration, this bottleneck
is removed. With many linear-scaling algorithms available for solving the KS equations under a
fixed effective potential [9], OO-DFT can be implemented as an essentially linear-scaling method.
We have applied OO-DFT method to the cubic diamond (CD) Si system, a covalent semiconducting
material that poses difficulty for OF-DFT. In the following, we will compare the predicted static
properties from OO-DFT to those from KS-DFT and OF-DFT.
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3 Results for the CD Si

The OO-DFT and KS-DFT results are obtained from a modified ABINIT code [10]. Both the
NLPS [11] and the BLPS [5] are employed. In our OF-DFT calculations, the Wang-Govind-Carter
(WGC) KEDF [6] and the BLPS [5] are used to compute the kinetic energy and nuclear-electron
interaction energy. Local density approximation (LDA) [12] is used in all the DFT calculations.
The computational details are reported in Refs. [5] and [7].
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Figure 1: The electron densities in reciprocal space from a unit cell of the CD Si with lattice
constant 5.40 A, (a) from the BLPS and (b) from the NLPS, using KS (solid diamond), OF
(opaque circles), and OO (open squares) DFT methods.

Fig. 1 depicts the electron density in reciprocal space, p(g), of the CD Si with the BLPS and the
NLPS. Discrepancies between pks(g) and por(g) are obvious. In both cases, the value of por(g)
at the first Bragg vector is too high, while those at some intermediate g vectors are too low. The
density with the BLPS is notably improved by the one-iteration OO-DFT and poo(g) is getting
very close to pks(g). Even when the NLPS is used, the error in poo(g) is significantly reduced.
This illustrates that the error in OF-DFT density is mainly due to the less optimal KEDF.

The equation of state (EOS) for the CD Si is computed in KS-DFT, OO-DFT , and OF-DFT. In
order to obtain the static structural properties, we fit the EOS data to Murnaghan’s EOQS [13] for
an arbitrary volume V,

BoV
By

(Vo/V)Po
By —1

Eiot (V) = + 1| + constant , (7

where By and Bj are the bulk modulus and its pressure derivative at the equilibrium volume Vj,
respectively.

Table 1 displays the resulting equilibrium volumes Vj, equilibrium bulk moduli By, and equilibrium
energies Ey. The combination of the WGC KEDF and the BLPS in OF-DFT generates results
containing large errors, with Vj too large by ca. 20%, By too small by ca. 70%, and Ey too low
by ca. 0.1%. In contrast, OO-DFT produces results very close to those from KS-DFT with the
errors of the three properties reduced to 0.4%, 1.5%, and 0.01%, respectively. We further use the
NLPS to test the accuracy of OO-DFT. The data in Table 1 shows that the KS-DFT results are
very well reproduced by OO-DFT.
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Table 1: OF (BLPS), OO (NLPS and BLPS), and KS (NLPS and BLPS) LDA predictions of the
CD Si equilibrium bulk properties: Vg, By, and Ey.

Property OF 00 KS
Vo (A3) 23.966 19.356 19.431
BLPS By (GPa) 25.8 97.0 95.6
Fy (eV/atom)  —110.345 —110.228 —110.236
Vo (A3) 19.393 19.489
NLPS By (GPa) 94.8 92.6
Ey (eV/atom) —-108.059  —108.067

4 Summary and Conclusions

We have developed an effective linear-scaling OO-DFT method by combining OF-DFT and KS-
DFT via a density connection. OO-DFT offers remarkable improvements over the OF-DFT results
and achieves comparable accuracy as KS-DFT at the cost of performing only a single non-self-
consistent iteration of KS calculation under a fixed KS effective potential. We anticipate OO-DFT
to venture into domains beyond the limits of other first-principles quantum mechanical methods.
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