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ABSTRACT: We propose a new density functional for the evaluation of the total
electronic energy by subtracting the Roothaan energy, i.e. the Hartree energy of the density
residual, from the Hohenberg–Kohn–Sham (HKS) functional, which is normally used in
self-consistent Kohn–Sham (KS) density functional theory (DFT) calculations. Because of
the positive semi-definite nature of the Roothaan energy, the resulting Wang–Zhou (WZ)
functional always produces a total energy lower than that from the HKS functional and
usually converges to the exact total energy from below. Following the same spirit of the
Zhou–Wang-λ (ZWλ) functional in the recently proposed orbital-corrected orbital-free
(OO) DFT method (Zhou and Wang, J Chem Phys 2006, 124, 081107), we linearly mix the
WZ functional with the HKS functional to allow further systematic error cancellations. The
resulting Wang–Zhou-α (WZα) functional is compared with the ZWλ functional in
OO-DFT calculations for systems within different chemical environment. We find that the
optimal value of α for the WZα functional is more stable than that of λ for the ZWλ

functional. This is because the WZ functional remedies the oscillatory convergence
behavior of the Harris functional and renders the direct evaluation of α for the WZα

functional more plausible in the application of the linear-scaling OO-DFT method for large
systems. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem 107: 2995–3000, 2007
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D ensity functional theory (DFT) [1], one of the
most widely used first-principles quantum

mechanics methods, provides an approximate yet
rigorous approach to treat the many-body problem
of N interacting electrons and plays a vital role in
understanding the properties of matter. However, its
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general large-scale applications are still confronted
with difficulties. Its two most common implementa-
tions, the orbital-based Kohn–Sham (KS) DFT [2] and
orbital-free (OF) DFT [3], have their own strengths
and weaknesses.

In KS-DFT, the following KS equations (in Hartree
atomic units) are solved:

(
−1

2
∇2 + vKS

eff [ρ](r)
)

φi(r) = εiφi(r), (1)
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where the KS effective potential, vKS
eff [ρ](r), con-

tains the Hartree, exchange-correlation (XC), and
ion–electron potentials:

vKS
eff [ρ](r) = δEH[ρ]

δρ(r)
+ δExc[ρ]

δρ(r)
+ vne(r)

= vH[ρ](r) + vxc[ρ](r) + vne(r). (2)

With the iterative methods [4], the KS effective poten-
tial constructed from some input density, vKS

eff [ρin],
is fixed at each iteration, and the new density is
obtained from the output orbitals:

ρout(r) =
∑

i

fi|φi(r)|2, (3)

where fi is the occupation number of the ith KS orbital
φi. Working in a plane-wave basis set, we can take
advantage of some density mixing schemes [4] to
generate the input density for the next iteration in
reciprocal space:

ρ i+1
in = ρ i

in + GR
[
ρ i

in

]
, (4)

where G is the preconditioning matrix to reduce the
density residual R[ρin],

R[ρin] = ρout − ρin. (5)

In different density mixing schemes, G takes differ-
ent forms [4]. The simplest preconditioning matrix is
just a unit matrix multiplied by a constant, which cor-
responds to linear mixing. In the well-known Kerker
scheme [5], the preconditioning matrix is diagonal in
reciprocal space and takes the following form for the
reciprocal space wave vector [6], q,

G(q) = A
q

q2 + q2
0

, (6)

where A and q0 are two parameters. In more robust,
sophisticated density mixing schemes, such as the
Pulay scheme [7], the preconditioning matrix can
have non-zero off-diagonal elements in reciprocal
space [4].

For each iteration, the Hohenberg–Kohn–Sham
(HKS) functional [8] is usually employed to evaluate
the total electronic energy:

EHKS[ρin, ρout] =
∑

i

fiεi + EH[ρout] − 〈ρout(r)vH[ρin]〉

+ Exc[ρout] − 〈ρout(r)vxc[ρin]〉. (7)

Upon the full self consistency, the converged KS
orbitals of Eq. (1) yield the exact KS density, ρKS(r),
and the HKS functional becomes the exact total KS
electronic energy, EKS,

EKS[ρKS] =
∑

i

fi

〈
φi

∣∣∣∣−1
2
∇2

∣∣∣∣ φi

〉
+ EH[ρKS]

+ Exc[ρKS] + 〈ρKS(r)vne(r)〉. (8)

In the conventional KS-DFT method, the cost of
each iteration scales as O(N3) due to the orbital
orthonomalization. Although many linear-scaling
algorithms [9] developed in the last decade allow
the computational cost increases linearly with the
size of the system, the total cost is still quite high
because a large number of iterations are needed
to reach self consistency [4]. To avoid the many
iterations in self-consistent KS-DFT calculations,
the Harris functional [10] is often used for a
fast yet accurate evaluation of the total electronic
energy:

EHarris[ρin, ρout] =
∑

i

fiεi − EH[ρin] + Exc[ρin]

− 〈ρin(r)vxc[ρin]〉, (9)

when a good approximation to the exact KS den-
sity is available [11–13]. However, the Harris func-
tional is not necessarily more accurate than the HKS
functional and can be either a saddle point or a
local minimum at the exact KS density [12]. Con-
sequently, the error of the Harris functional can
be either positive or negative, as will be shown
later.

On the other hand, OF-DFT can be implemented
essentially as a linear-scaling method with compu-
tational cost of O(N ln N) [3]. Currently, OF-DFT
calculations have not achieved high accuracy con-
sistently, mainly because of the lack of an accurate
kinetic energy density functional (KEDF) [3] and
high-quality local pseudopotentials (LPS) [14]. The
recently proposed orbital-corrected OF-DFT (OO-
DFT) [15], a new implementation of DFT, retains the
merits of both KS-DFT and OF-DFT and avoids their
drawbacks. The special features of OO-DFT lie in
two aspects: (i) the high-quality density generated
from OF-DFT is used as the initial input density for
subsequent KS-DFT calculations and (ii) the Zhou-
Wang-λ (ZWλ) functional is used to evaluate the
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total electronic energy,

EZWλ[ρin, ρout] = (1 − λ)EHKS[ρin, ρout]
+ λEHarris[ρin, ρout], (10)

where λ is an interpolation parameter. The form of
the ZWλ functional can be rationalized by the analy-
sis on the following second-order errors in the HKS
and Harris functionals with respect to the exact KS
energy [13]:

EHKS − EKS = 〈R[ρin(r)]C(r, r′)[ρout(r′) − ρKS(r′)]〉
+ O(δρ3), (11)

EHarris − EKS = 〈R[ρin(r)]C(r, r′)[ρin(r′) − ρKS(r′)]〉
+ O(δρ3), (12)

where C(r, r′) is given by

C(r, r′) = 1
2

(
1

|r − r′| + δvxc[ρ](r)
δρ(r′)

∣∣∣∣
ρin

)
. (13)

In our previous work [15], we found that for sim-
ple bulk systems, such as the cubic diamond (CD) Si
and the face-centered-cubic (fcc) Ag, a linear combi-
nation of ρin(r) and ρout(r) usually provides a good
approximation to ρKS(r),

ρKS(r) ≈ (1 − λ)ρout(r) + λρin(r), (14)

and the mixing parameter, λ, closely mimic the recip-
rocal space density mixing parameters at the first
one or two Bragg vectors [6]. A close inspection of
Eqs. (11)–(14) reveals that the second-order errors
in the HKS and Harris functionals can be system-
atically canceled by the ZWλ functional in Eq. (10).
For complex systems, Eq. (14) is less likely to be a
good approximation; however, one still expects some
systematic error cancelations to occur in the ZWλ

functional with an appropriate λ.
The performance of the ZWλ functional has been

demonstrated in our previous OO-DFT calculations
on the CD Si and the fcc Ag systems [15]. During
more extensive tests of the ZWλ functional, we found
that its optimal λ value fluctuates a lot from iteration
to iteration, sometimes out of the range from 0 to 1.
This undesirable feature is mainly due to the oscilla-
tory convergence behavior of the Harris functional
and causes difficulty in a direct evaluation for the

optimal value of λ. To remedy this defect, we subtract
the Roothaan energy [16, 17],

ER[ρin, ρout] = 1
2

〈
R[ρin(r)]R[ρin(r′)]

|r − r′|
〉

, (15)

from the HKS functional to obtain the Wang–Zhou
(WZ) functional:

EWZ[ρin, ρout] = EHKS[ρin, ρout] − ER[ρin, ρout]
=

∑
i

fiεi − EH[ρin] + Exc[ρout]

− 〈ρout(r)vxc[ρin]〉. (16)

Here, the first and the last two terms on the right-
hand side of the second equal sign are identical
to the first two terms in the Harris functional [Eq.
(9)] and the last two terms in the HKS functional
[Eq. (7)], respectively. Note that the Roothaan energy
is a positive semi-definite quantity [16, 17] and it
smoothly converges to 0 as the density residual van-
ishes [18]. Thus, the WZ functional always produces
a lower total energy than the HKS functional does,
and the oscillatory convergence behavior exhibited
in the Harris functional is completely eliminated.
Later, we will see that EWZ usually converges to EKS

from below; however, whether it is a lower bound to
EKS remains to be proven.

Based on Eqs. (11) and (16), the second-order
errors in the WZ functional have two contributions:

EWZ − EKS

= 1
2

〈
R[ρin(r)]

(
δvxc[ρ](r)

δρ(r′)

∣∣∣∣
ρin

)
[ρout(r′) − ρKS(r′)]

〉

+ 1
2

〈
R[ρin(r)]
|r − r′| [ρin(r′) − ρKS(r′)]

〉
+ O(δρ3). (17)

To allow further error cancelations between EHKS and
EWZ, we again linearly mix the WZ functional with
the HKS functional, resulting in the Wang–Zhou-α
(WZα) functional,

EWZα[ρin, ρout] = (1 − α)EHKS[ρin, ρout]
+ αEWZ[ρin, ρout]

= EHKS[ρin, ρout] − αER[ρin, ρout], (18)

with the mixing parameter α. Eq. (18) shall cancel
the errors of the terms involving 1

|r−r′| in Eqs. (11)
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and (17), if Eq. (14) provides a good approxima-
tion with the optimal value of α. In essence, the
WZα functional utilizes part of the Roothaan energy
to cancel the error in the HKS functional. Interest-
ingly, employing the existing code of computing the
Hartree energy for the evaluation of the Roothaan
energy enables the WZα functional to be used not
only in DFT methods but also in other first-principles
methods utilizing self-consistent iterations. The cost
of computing the Roothaan energy only increases
linearly with the size of the system even when strictly
confined basis orbitals are employed [19].

We test the WZ and WZα functionals in OO-DFT
calculations on the following systems: the CD Si, the
fcc Ag, and the CD Si vacancy and (100) surface.
Orthorhombic unit cells containing 8 and 4 atoms
are used for the CD Si and the fcc Ag, respectively. A
2×2×2 super cell containing 63 atoms and 1 vacancy
is used for the CD Si vacancy. The CD Si (100) surface
contains a five-layer slab with two atoms per layer
and the vacuum has the same dimension as the slab.
The local density approximation (LDA) [20] is used
in all DFT calculations.

For the CD Si and the fcc Ag, all DFT calcula-
tions are carried out under the same conditions as
those in Ref. 15. For the CD Si vacancy and (100) sur-
face, the kinetic-energy cutoffs for the plane-wave
basis set are chosen to be 760 eV for OO-DFT and
KS-DFT calculations and 1.52 KeV for OF-DFT calcu-
lations to ensure all the computed quantities are fully
converged with respect to the basis set. The Wang–
Govind–Carter (WGC) [21] KEDF and the LPS

derived from a bulk environment [14] are employed
in OF-DFT calculations. A modified ABINIT code
[22] is used to run OO-DFT and KS-DFT calculations,
in which the standard Troullier-Martins nonlocal
pseudopotentials (NLPS) [23] are employed. For the
CD Si vacancy, we find that it is adequate to only
employ the � point for the Brillouin-zone (BZ) sam-
pling [6]. For the CD Si (100) surface, a 6 × 6 × 1
Monkhorst-Pack grid [24] with 28 irreducible k-
points is used for the BZ sampling. In OO-DFT
calculations on the CD Si vacancy and (100) surface,
we adopt Kerker’s formula [5] [see Eq. (6)] for the
preconditioning matrix at the end of the first itera-
tion, with the recommended values [4] for the two
parameters: A = 0.8, and q0 = 1.5 Å−1. For the subse-
quent iterations, the Pulay’s scheme [7] is employed
for density mixing.

The total energies of the CD Si at different cell
volumes are evaluated from the HKS, WZ, and
WZα functionals with the densities from the first
iteration in OO-DFT and are compared with the
fully converged KS results in Figure 1(a). The HKS
functional slightly overestimates the total energies
at relatively large cell volumes, whereas the WZ
functional significantly underestimates them. With
α = 0.16, the WZα functional is able to reproduce
the fully converged KS energies accurately.

Figure 1(b) depicts the total energies of the fcc Ag
at different cell volumes using the HKS, WZ, and
WZα functionals in OO-DFT. The results from the
first iteration are shown in the inset: both the HKS
and WZ functionals lead to large errors at relatively

FIGURE 1. LDA total energies (in eV/atom) versus cell volume V (in Å3) for (a) the CD Si and (b) the fcc Ag. The
results from the HKS (open square), WZ (open circle), and WZα (opaque triangle) functionals in OO-DFT are compared
with those from KS-DFT (solid diamond).
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FIGURE 2. Convergence of total energies (in eV) evaluated from the HKS (solid square), Harris (opaque triangles),
and WZ (open circles) functionals (top panels) and the optimal λ value of the ZWλ (opaque circles) functional vs. the
optimal α value of the WZα (solid square) functional (bottom panels) during the self-consistent iterations for (a) the CD Si
vacancy and (b) the CD Si (100) surface systems. In the lower pannel of (b), the optimal values of λ are −46.25 and
16.97 at iterations 8 and 10, respectively.

large cell volumes, and the WZα functional yields
much better results with α = 0.50. At the second
iteration, the input density is chosen to be the aver-
age of the input and output densities from the first
iteration. We see that errors in the HKS and WZ func-
tionals are significantly suppressed, though visible
deviations from the KS results still exist at relatively
large cell volumes. With α = 0.41, the total energies
from the WZα functional almost exactly match those
KS results.

The total energies of the CD Si vacancy and (100)
surface are computed in OO-DFT from the HKS, Har-
ris, and WZ functionals. The top panels of Figure 2
illustrate the convergence behavior of those func-
tionals. For the CD Si vacancy [top panel of Fig. 2(a)],
the Harris functional is usually more accurate than
the HKS and WZ functionals. Consequently, the opti-
mal λ of the ZWλ functional is usually larger than 0.5
as shown in the bottom panel of Figure 2(a). In con-
trast, the optimal α value of the WZα functional is
around 0.5 because the absolute error in the WZ func-
tional is about the same as that in the HKS functional
[see the top panel of Fig. 2(a)]. Note that the optimal
λ value of the ZWλ functional becomes negative at
the eleventh iteration when EKS < EHKS < EHarris. On
the other hand, the optimal α value of the WZα func-
tional is always between 0 and 1, reflecting that the
WZ functional yields a total energy lower than the
exact KS energy.

The advantage of the WZα functional over
the ZWλ functional is more obvious in OO-DFT
calculations on the more complex CD Si (100) sur-
face system. From the top pannel of Figure 2(b), we
see that the Harris functional is not necessarily more
accurate than the HKS and WZ functionals. More-
over, the convergence patterns of the HKS, Harris,
and WZ functionals are clearly different from one
another. As seen from the bottom panel of Fig. 2(b),
the optimal λ value of the ZWλ functional fluctu-
ates much more drastically than that for the CD Si
vacancy system. At the first, second, eighth, ninth,
and eleventh iterations when EKS < EHKS < EHarris,
the optimal λ value is negative; while at the seventh,
tenth, and twelveth iterations when EKS < EHarris <

EHKS, the optimal λ value is above 1. This poses a
great difficulty in direct evaluation of the λ value for
the ZWλ functional. In comparison, the fluctuation
of the optimal α value is strongly suppressed in the
WZα functional.

Lifting the requirement for the full self-consistency,
the use of the WZα functional in OO-DFT or other
iterative first-principles methods is expected to sig-
nificantly lower the computational cost if the opti-
mal value for the mixing parameter α of the WZα

functional can be readily determined. One simple
solution is to find the optimal α value for a small sub-
system whose chemical environment closely mimics
that of the entire big system and to use the same
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α value in subsequent OO-DFT calculations for the
entire system. More attractively, the optimal α value
can be directly evaluated from the density mixing
parameters on the fly. We are currently working
along this direction.

In conclusion, we have designed a new total
energy density functional, i.e., the WZ functional,
which usually converges to the exact KS energy
from below and remedies the defect of the Harris
functional. The WZα functional, a linear combina-
tion of the HKS and WZ functionals, allows further
error cancellations and its accuracy is demonstrated
by OO-DFT calculations on systems within differ-
ent chemical environment. Compared with the ZWλ

functional proposed in our earlier work [15], the
WZα functional can accurately reproduce the fully
converged KS energy with much more consistent,
stable optimal α value.
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