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Orbital-corrected orbital-free density functional theory
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A new implementation of density functional theory �DFT�, namely orbital-corrected orbital-free
�OO� DFT, has been developed. With at most two non-self-consistent iterations, OO-DFT
accomplishes the accuracy comparable to fully self-consistent Kohn-Sham DFT as demonstrated by
its application on the cubic-diamond Si and the face-centered-cubic Ag systems. Our work provides
a new impetus to further improve orbital-free DFT method and presents a robust means to
significantly lower the cost associated with general applications of linear-scaling Kohn-Sham DFT
methods on large systems of thousands of atoms within different chemical bonding environment.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2176610�
Density functional theory �DFT� has been firmly estab-
lished as one of the most widely used first-principles quan-
tum mechanical �QM� methods in many fields.1–5 Each of the
two ways of solving the DFT problem, i.e., the traditional
orbital-based Kohn-Sham �KS�3,4 and the orbital-free �OF�5

schemes, has its own strengths and weaknesses. In this Com-
munication, we present a new implementation of DFT,
namely orbital-corrected orbital-free �OO� DFT, which coa-
lesces the advantages and avoids the drawbacks of OF-DFT
and KS-DFT and allows systems within different chemical
bonding environment to be studied at a much lower cost than
the traditional self-consistent KS-DFT method. Furthermore,
OO-DFT can achieve linear scaling by employing currently
available linear-scaling KS-DFT algorithms and provide a
powerful tool to treat large systems of thousands of atoms
much more efficiently than other currently available linear-
scaling DFT methods.

In the traditional KS-DFT,3 the computational cost scales
like O�Nk ·N3�, where N is a measure of the system size �the
size of the basis set or the number of electrons� and Nk is the
number of the k-points used in the Brillouin-zone sampling
required for periodic systems.6 In the last decade, many
linear-scaling techniques have been developed to reduce the
scaling of KS-DFT.4 With such techniques, one could solve
the KS equations under a fixed effective potential with a cost
increasing linearly with the system size.38 The efficiency of
these linear-scaling techniques is further enhanced by com-
bining them with massively parallel algorithms.7 Recently,
systems of more than 1000 atoms have been studied with
such state-of-the-art linear-scaling techniques.7,8 Despite
their success, these methods still suffer from a severe disad-
vantage, which is the number of many iterations required to
achieve self-consistency,9,10 whose computational cost per it-
eration is still quite high.

On the other hand, if a good approximation of the exact
density or the exact wave function is already known, one can
avoid the many iterations in the self-consistent KS-DFT by
using efficient perturbation techniques to calculate the den-
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sity or the wave function. A good example is the famous
Harris functional11,12 with incomplete inclusion of the
second-order correction. Based on the same perturbation ap-
proach, a new method incorporating the complete second-
order correction was recently developed by Benoit et al.13

and further modified by Zhu and Trickey.14 One difficulty of
this method is the necessity to evaluate the second-order
functional derivative of the exchange-correlation energy den-
sity functional �XCEDF�. It also remains to be investigated
under what circumstances this method is suitable for appli-
cations on large systems, with a comparable accuracy to the
fully self-consistent KS-DFT.

From a different perspective, the original Hohenberg-
Kohn �HK� theorems of DFT2 involve no orbitals at all and
the total energy is formulated purely as a functional of the
electron density ��r� for a given external potential vne�r�,

Ev��� = Ts��� + EH��� + Exc��� + ���r�vne�r�� , �1�

where Ts is the electronic kinetic energy of a noninteracting
system that has the same electron density as the interacting
system, EH is the classical Hartree repulsion energy, Exc is
the exchange-correlation energy, and ���r�vne�r�� is a short-
hand notation for the nuclear-electron interaction energy,
���r�vne�r�dr. In fact, the original implementation of DFT,
namely the Thomas-Fermi �TF� model,15 is an OF scheme, in
which ��r� is the only variational variable. In OF-DFT, one
can calculate the ground-state density and other properties
not explicitly dependent on the wave function, by directly
minimizing Eq. �1� under the constraint that ��r� is properly
normalized to the number of electrons in the system. This
leads to the following TF-HK equation,

�Ev���
���r�

=
�Ts���
���r�

+
�EH���
���r�

+
�Exc���
���r�

+ vne�r�

=
�Ts���
���r�

+ vH����r� + vxc����r� + vne�r�

=
�Ts���
���r�

+ veff
KS����r� = � , �2�
where � is the Lagrange multiplier to impose the correct
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normalization of ��r� during the minimization and corre-
sponds to the chemical potential after the total energy is
minimized, and vH����r�, vxc����r�, and veff

KS����r� are the
Hartree, exchange-correlation, and total KS effective poten-
tials, respectively. With the modern fast Fourier transform
technique,16 OF-DFT can be implemented essentially as a
linear-scaling method with computational cost of
O�N · ln N�.5,17–24 Studies on the dynamics of several thou-
sand atoms near a metallic grain boundary,17 on the metal-
insulator transition in a two-dimensional array of metal
nanocrystal quantum dots,18 and in a multiscale model of
nanoindentation19 demonstrate the power and efficiency of
the OF-DFT method.

Although the research on OF-DFT has a much longer
history than that on KS-DFT, OF-DFT has not yet become a
mainstream QM method. The major obstacles lie in the lack
of a transferable kinetic-energy density functional �KEDF�
and accurate local pseudopotentials �LPSs� to calculate the
kinetic energy and the nuclear-electron interaction energy.5

In the last decade, many linear-response based KEDFs have
been developed, which can treat simple metallic systems al-
most as accurate as KS-DFT.20,21 Recently, first-principles
LPSs derived from a bulk environment �BLPS� were gener-
ated for covalent materials22 and transition metals.24 In
KS-DFT, BLPSs accurately reproduce the results from high-
quality nonlocal pseudopotentials �NLPS�.25 However, the
use of such BLPSs in OF-DFT for covalent materials and
transition metals produces results containing large unaccept-
able errors, which are mainly attributed to the defect of the
approximate KEDFs.22–24 Thus, the present applications of
OF-DFT are only confined to simple metallic systems.

To improve the present implementations of DFT and to
further extend its application on large systems of thousands
of atoms within different chemical bonding environment, we
have devised a new OO-DFT method, which combines
OF-DFT and KS-DFT via a density connection. In OO-DFT,
one first solves Eq. �2� to obtain the density �OF�r� and the
KS effective potential, veff

KS��OF��r�. Second, one solves the
KS equations with the fixed veff

KS��OF��r�,

�− 1
2�2 + veff

KS��OF��r���i
�1��r� = �i

�1��i
�1��r� , �3�

and obtains the new density �OO
�1� �r� after one non-self-

consistent iteration,

�OO
�1� �r� = �

i

f i
�1�	�i

�1��r�	2, �4�

where �i
�1� and f i

�1� are the eigenvalue and occupation number
of the ith KS orbital �i

�1��r� of the first KS iteration, respec-
tively. The above procedures constitute the essence of
OO-DFT. With the above mentioned linear-scaling tech-
niques for a fixed KS effective potential,4 the implementation
of OO-DFT can be made essentially linear. Since veff

KS�r� in
Eq. �3� can be either local or nonlocal, the NLPS can thus be
employed for vne�r� in OO-DFT to eliminate the drawback of
LPSs in OF-DFT.22–24 In OO-DFT, �OF�r� is the key link
between OF-DFT and KS-DFT and its accuracy dictates the

KS
final results through veff ��OF��r� in Eq. �3�.
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There are several ways to define the total energy in
OO-DFT. Following Chelikowsky and Louie,26 one can use
the Hohenberg-Kohn-Sham �HKS� functional evaluated at
�OO

�1� �r� as the total energy,

EHKS��OF,�OO
�1� � = �

i

f i
�1��i

�1� + EH��OO
�1� � + Exc��OO

�1� �

− ��OO
�1� �r�vH��OF�� − ��OO

�1� �r�vxc��OF�� .

�5�

Alternatively, replacing �OO
�1� �r� by �OF�r� in Eq. �5�, one ob-

tains the famous Harris functional,11

EHarris��OF,�OO
�1� � = �

i

f i
�1��i

�1� + Exc��OF� − EH��OF�

− ��OF�r�vxc��OF�� . �6�

Normally, the HKS functional offers an upper bound to the
self-consistent KS total energy, EKS, while the Harris func-
tional is stationary at the self-consistent KS electron density,
�KS�r�, and its value is usually lower than EKS.11 Therefore,
we propose the following Zhou-Wang-� �ZW�� functional as
a better approximation to EKS via an error cancellation be-
tween EHKS and EHarris,

EZW���OF,�OO
�1� � = �1 − ��EHKS��OF,�OO

�1� �

+ �EHarris��OF,�OO
�1� � , �7�

where � is an interpolation parameter. Based upon the work
of Finnis,12 the form of the ZW� functional can be further
rationalized on the ground that the second-order errors in
EHKS and EHarris in Eq. �7� cancel if a linear combination of
�OO

�1� �r� and �OF�r� provides a good approximation to �KS�r�,

�KS�r� 
 �1 − ���OO
�1� �r� + ��OF�r� . �8�

Understandably, the optimal value of � for different systems
depends on the quality of �OF�r� and �OO

�1� �r�. Usually, a high-
quality �OF�r� delivers an even better-quality �OO

�1� �r�, which
renders EHKS more accurate than EHarris, resulting in a small
weight of EHarris or a small value of � in Eq. �7�. However,
the errors in �OF�r� and �OO

�1� �r� may be of similar magnitude
for some systems, in which the weight of EHarris should
be increased to allow more error cancellation. With the opti-
mal �, EZW� should outperform both EHKS and EHarris in
OO-DFT.

A similar idea of combining OF-DFT and KS-DFT also
appeared in some implementations27,28 of the Strutinsky shell
correction method,29 in which the crude TF KEDF is usually
employed in OF-DFT. The scheme of Yannouleas et al.27 is
equivalent to using the Harris functional in OO-DFT, while
the scheme of Ullmo et al.28 is similar to utilizing the HKS
functional in OO-DFT. The OO-DFT method introduced
here should be more general and better than these two
schemes. Another approximation for the evaluation of the
exact �KS�r� without running many self-consistent iterations
was also suggested,28 but we found it to be impractical in
general.

Previously, our OF-DFT studies22,23 found that the state-
of-the-art linear-response based KEDF, i.e., the Wang-

Govind-Carter �WGC� KEDF with a density dependent
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kernel,21 is inadequate to describe the covalent bonding in
the cubic-diamond �CD� Si system. The bulk properties pre-
dicted by OF-DFT contain significant errors, although the
resulting electron density is of much better quality. Below,
we will test OO-DFT on the same system with a hope to
reduce such errors from OF-DFT.

The local density approximation �LDA�30 for the
XCEDF was used for all DFT calculations in this work. The
ABINIT code31 was modified to implement our OO-DFT
method. In OO-DFT and KS-DFT, both the BLPS and the
NLPS constructed from the standard Troullier-Martins
scheme32 using the FHI98PP code33 were used to compute
the nuclear-electron interaction energy. A 6�6�6
Monkhorst-Pack grid34 with 40 irreducible k-points was used
in the Brillouin-zone sampling of an eight-atom cubic unit
cell for the CD Si. In OO-DFT, the Harris, HKS, and ZW�
functionals were used to evaluate the total energy. In
OF-DFT calculations, the WGC KEDF with the optimized
parameters21,23 and the BLPS22 were employed. The kinetic-
energy cutoffs for the plane-wave basis set were chosen to be
760 eV for OO-DFT and KS-DFT calculations and

FIG. 1. LDA total energies �in eV/atom� vs cell volume V �in Å3� for the CD
were used. In OO-DFT, the Harris �open circle�, HKS �open square�, and ZW
triangle, only for the BLPS�, OO1-DFT, and KS-DFT �solid diamond� resul
are compared with OO2-DFT results and the two insets show the compariso
1.52 KeV for OF-DFT calculations to ensure all the quanti-
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ties we computed are fully converged with respect to the
basis set. A second-order damped dynamics method5,21 was
employed to minimize the total energy with the convergence
criterion set to 0.125 meV/atom.23 Hereafter, we will use
OO1 to denote the results from the first KS iteration.

The equations of state of the CD Si from OF-DFT,
OO1-DFT, and KS-DFT are shown in Fig. 1. OF-DFT only
produces qualitatively accurate equations of state, whereas
the equations of state from KS-DFT are well reproduced in
OO1-DFT using the Harris, HKS, and ZW� functionals with
both of the BLPS and the NLPS �Figs. 1�a� and 1�b��. How-
ever, the resemblance of the equations of state of the Harris
and HKS functionals to those of KS-DFT is slightly degrad-
ing as the cell volume increases, which clearly reflects that
the quality of �OF�r� is of the same trend. We also see that
the errors in the Harris functional are larger than those in the
HKS functional, which indicates that �OO

�1� �r� is prominently
better than �OF�r� even at large cell volumes and anticipates
a small optimal value for �. With the BLPS, the ZW� ener-
gies almost exactly match those of KS-DFT using a small

d the fcc Ag. In �a� and �c�, the BLPSs were used. In �b� and �d�, the NLPSs
paque up triangle� functionals are used. In �a� and �b�, OF-DFT �dark down
compared with one another for the CD Si. In �c� and �d�, KS-DFT results

tween KS-DFT and OO1-DFT results for the fcc Ag.
Si an
� �o

ts are
n be
optimal � value of 0.30. With the NLPS, the optimal � value
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increases only to 0.34, due to a slightly larger deviation of
�OF�r� from �KS�r�.

We then fitted the data of the equations of state to the
Murnaghan’s equation35 and obtained the static bulk proper-
ties of the CD Si. The large errors in OF-DFT are nearly 11%
for the equilibrium volume V0, 36% for the equilibrium bulk
modulus B0, and 23.0 meV/atom for the equilibrium energy
E0. These errors are sufficiently reduced in OO1-DFT with
the use of the Harris, HKS, and ZW� functionals. Among
them, the ZW� functional yields almost identical bulk prop-
erties to the KS-DFT predictions. With the use of the NLPS,
the smallest errors are again in the ZW� results: about 0.08%
for V0, 0.2% for B0, and 1.0 meV/atom for E0. The improve-
ment achieved by OO1-DFT for the CD Si is very encour-
aging indeed.

In our previous efforts to further extend OF-DFT to treat
the face-centered-cubic �fcc� Ag,24 it was found that the
highly localized density distribution of the d electrons of Ag
poses even harder challenges: the WGC KEDF5,21 failed to
converge the total energy.23 The von Weizsäcker-
�-Thomas-Fermi �vW�TF� KEDF,36 which incorporates a
partial contribution ��=0.4� from the TF KEDF into the full
von Weizsäcker �vW� KEDF37 is more capable of dealing
with systems with strongly localized electron distributions.
For the fcc Ag, the use of the vW�TF KEDF and the BLPS
in OF-DFT produces densities bearing a close resemblance
to those from KS-DFT, but the equations of state still exhib-
its large unacceptable errors.24 Such a transition metal sys-
tem provides a stringent test on the robustness of our
OO-DFT.

A kinetic-energy cutoff of 1.2 KeV was used in KS-DFT
calculations. Both the BLPS24 and the NLPS32 were em-
ployed to compute the nuclear-electron interaction energy. A
6�6�6�6 Monkhorst-Pack grid with 40 irreducible
k-points was used for the Brillouin-zone sampling of a four-
atom cubic unit cell for the fcc Ag. Fermi-surface smearing
of width 54 meV was utilized to converge the KS orbitals at
the Fermi level. In OF-DFT, the real space grids were set to
be the same as those used in KS-DFT. Due to the nature of
the extremely repulsive BLPS and the highly localized den-
sity distributions, almost all the grid points in the corre-
sponding reciprocal space grids were used to compute the
nuclear-electron interaction energy and the vW kinetic en-
ergy. Thus, the maximum energy of the plane waves reaches
ca. 10 KeV.24 As shown later, the first KS iteration gets rid
of most of the errors in OF-DFT. However, the remaining
errors are still significant. This motivates us to introduce the
second KS iteration in OO-DFT. To avoid the well-known
“density sloshing” problem,10 the input density for the sec-
ond KS iteration �in

�2��r� was chosen to be the average of
�OF�r� and �OO

�1� �r�. Consequently, �OF�r� and �OO
�1� �r� in Eqs.

�5�–�7� are replaced by �in
�2��r� and the output density of the

second KS iteration, �OO
�2� �r�, respectively. Hereafter, we will

use OO2 to denote the results from the second KS iteration.
The equations of state of the fcc Ag from OO1-DFT and

KS-DFT are displayed in the insets of Fig. 1 for both of the
BLPS and the NLPS. In both cases, the equations of state
produced from the Harris and HKS functionals contain large

errors, which increase significantly with the increase of the
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cell volume, although they closely match the equations of
state from KS-DFT at small volumes. As shown by the insets
of Fig. 1�c�, the errors in the Harris functional is larger than
those in the HKS functional when the BLPS is used, result-
ing an optimal � value of 0.39. On the other hand, with the
NLPS, EHarris is closer to EKS than EHKS is, especially at large
volumes. This clearly implies that �OO

�1� �r� is severely over-
corrected in the first KS iteration. Thus, it is not surprising to
find the optimal � value increases to 0.65. The ending result
is very exciting: the ZW� functional yields much more ac-
curate equations of state than the HKS and Harris functionals
do.

The second KS iteration brings remarkable improve-
ments to the equations of state, as illustrated in Fig. 1. With
the BLPS �Fig. 1�c��, both the Harris and HKS functionals
generate equations of state that are only slightly off at large
volumes. The ZW� functional almost exactly reproduces the
equations of state of KS-DFT when � equals 0.41. With the
NLPS �Fig. 1�d��, the equations of state from the Harris and
HKS functionals still exhibit significant errors at large cell
volumes. This indicates that the errors in �OF�r� at large vol-
umes are too large to be completely eliminated even by the
second KS iteration. However, these errors miraculously di-
minish in the equations of state produced by the ZW� func-
tional when � equals 0.58. Note that the optimal � values of
the BLPS and the NLPS in OO2-DFT are very close to those
in OO1-DFT.

The static bulk properties of the fcc Ag were again com-
puted. With the use of the BLPS in OO1-DFT, the ZW�
functional produces reasonably accurate results, deviating
from KS-DFT results only 2.7% for V0, 2.6% for B0, and
0.020 eV/atom for E0. When the NLPS is used, these errors
increase somewhat, but still acceptable: 1.2% for V0, 19.5%
for B0, and 0.15 eV/atom for E0. In OO2-DFT, these errors
are effectively suppressed by the ZW� functional. With the
BLPS, the deviations from KS-DFT predictions are less than
0.09% for V0, 1.6% for B0, and virtually zero for E0. With
the NLPS, they are 0.02% for V0, 1.5% for B0, and
4.0 meV/atom for E0. This confirms that our OO-DFT
method is very versatile and robust: OO-DFT can even
handle systems involving large density fluctuations and
strong density localizations, such as transition metals.

Given those well-established linear-scaling KS-DFT and
OF-DFT algorithms,4,5,7,8,17–24 OO-DFT can certainly be
implemented as a highly powerful linear-scaling QM method
capable of treating large systems of thousands of atoms ac-
curately. The central technical issue of OO-DFT is to obtain
an optimal � value, which depends on the chemical environ-
ment of the system under study and is not very sensitive to
the size of the system. For example, for the CD Si, the opti-
mal � value remains the same whether we use an eight-atom
unit cell or a 64-atom supercell or even bigger cells. Thus,
for the large-scale application of OO-DFT, a simple, straight-
forward way to determine the optimal � value is to find the
optimal � value for a small subsystem, whose chemical en-
vironment closely mimics that of the entire system, and use
the same � value in subsequent OO-DFT calculations for the
entire system. Currently, we are developing a new scheme to

determine the optimal � value a priori.
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In conclusion, our OO-DFT remedies the drawbacks of
OF-DFT: the lack of a transferable KEDF and accurate
LPSs, at the cost of only introducing a single or double non-
self-consistent KS iterations, which in turn basically elimi-
nates the necessity for a full self-consistent KS cycle. Two
irrevocable factors have contributed to the success of our
OO-DFT method: �i� the high-quality �OF�r� as the input
density from OF-DFT calculation with the state-of-the-art
KEDFs and the BLPSs5,17–24 and �ii� the built-in systematic
error cancellation in the ZW� functional between the Harris
and HKS functionals. Due to the linear-scaling nature of OO-
DFT, we may treat large systems of thousands of atoms and
venture into regions beyond the limits of other first-
principles QM methods currently available in the literature.
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with Professor Emily A. Carter.
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