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We analyze the total energy evaluation in the Strutinsky shell correction method �SCM� of Ullmo
et al. �Phys. Rev. B 63, 125339 �2001��, where a series expansion of the total energy is developed
based on perturbation theory. In agreement with Yannouleas and Landman �Phys. Rev. B 48, 8376
�1993��, we also identify the first-order SCM result to be the Harris functional �Phys. Rev. B 31,
1770 �1985��. Further, we find that the second-order correction of the SCM turns out to be the
second-order error of the Harris functional, which involves the a priori unknown exact Kohn-Sham
�KS� density, �KS�r�. Interestingly, the approximation of �KS�r� by �out�r�, the output density of the
SCM calculation, in the evaluation of the second-order correction leads to the
Hohenberg-Kohn-Sham functional. By invoking an auxiliary system in the framework of
orbital-free density functional theory, Ullmo et al. designed a scheme to approximate �KS�r�, but
with several drawbacks. An alternative is designed to utilize the optimal density from a high-quality
density mixing method to approximate �KS�r�. Our new scheme allows more accurate and complex
kinetic energy density functionals and nonlocal pseudopotentials to be employed in the SCM. The
efficiency of our new scheme is demonstrated in atomistic calculations on the cubic diamond Si and
face-centered-cubic Ag systems. © 2007 American Institute of Physics. �DOI: 10.1063/1.2755714�

I. INTRODUCTION

In density functional theory �DFT�, the ground state
electronic total energy is decomposed into following terms,
with each term being a functional of the electron density,1,2

��r�,

Ev��� = Ts��� + EH��� + EXC��� + ���r�vne�r�� . �1�

Here, Ts is the electronic kinetic energy of a noninteracting
system that has the same electron density as the interacting
system, EH is the classical Hartree repulsion energy, EXC is
the exchange-correlation �XC� energy, and ���r�vne�r�� is a
shorthand notation for the nuclear-electron interaction en-
ergy, ���r�vne�r�dr. In the original formulation of DFT, i.e.,
orbital-free DFT �OF-DFT�,3 there are no one-electron orbit-
als involved. Based on the variational principle, the density
and the total energy are computed in OF-DFT by solving
the following Thomas-Fermi-Hohenberg-Kohn �TFHK�
equation:4

�Ev���
���r�

=
�Ts���
���r�

+
�EH���
���r�

+
�EXC���

���r�
+ vne�r�

=
�Ts���
���r�

+ vH����r� + vXC����r� + vne�r�

=
�Ts���
���r�

+ veff
KS����r� = � , �2�

where vH����r�, vXC����r�, and veff
KS����r� are the Hartree,

XC, and total Kohn-Sham �KS� effective potentials, respec-
tively, and � is the Lagrange multiplier to impose the correct

normalization of ��r� during the minimization and corre-
sponds to the chemical potential after the total energy is
minimized. Note that the last equal sign holds only for the
density that minimize the total energy functional.

With the modern fast Fourier transform technique,5 OF-
DFT can be implemented essentially as a linear-scaling
method with computational cost of O�N ln N�.4,6–13 Thus, it
is capable of treating large systems ��1000 atoms� at a much
lower cost than other orbital-based first-principles methods,
such as Hartree-Fock14 and KS-DFT �Ref. 15� methods. In
the past decade, OF-DFT has attracted increasing interest4

and the linear-scaling OF-DFT method has been applied to
study the dynamics of several thousand atoms near a metallic
grain boundary,6 the metal-insulator transition in a two-
dimensional array of metal nanocrystal quantum dots,7 and in
a multiscale model of nanoindentation.8 Despite the encour-
aging advances in OF-DFT, its applications are mainly lim-
ited to simple metallic systems, in which electrons are nearly
free-electron-like. The major unsolved problem in OF-DFT
is that the exact KS kinetic energy density functional
�KEDF�, which corresponds to the first term in Eq. �1�, is
still unknown. Although many KEDFs have been developed
in the past, all of them suffer from the accuracy problem to
different extents and some of them cannot be evaluated with
linear-scaling algorithms, which prevent OF-DFT from be-
coming a mainstream quantum mechanics method.4,11,12 In
the following, the KEDFs we will discuss refer to approxi-
mations of the exact KS KEDF at different levels.

Instead of tackling the KEDF problem directly, the
Strutinsky shell correction method16,17 �SCM� tries to im-
prove the accuracy of OF-DFT by introducing a non-self-
consistent KS-DFT calculation �in Hartree atomic units�,
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�− 1
2�2 + veff

KS��OF��r���i�r� = �i�i�r� , �3�

where the input density, �OF�r�, is obtained from an OF-DFT
calculation and �i is the eigenvalue of the ith orbital, �i�r�.
The output density, �out�r�, is generated from the orbitals via

�out�r� = �
i

f i	�i�r�	2, �4�

where f i is the occupation number of �i�r�. On the other
hand, many iterations are carried out in the self-consistent
KS-DFT calculation until the output density is converged to
the exact KS density, �KS�r�. Then, the exact KS total energy,
EKS��KS�, is obtained as follows:

EKS��KS� = �
i

f i��i
KS	− 1

2�2	�i
KS� + EH��KS� + EXC��KS�

+ ��KS�r�vne�r�� , �5�

where �i
KS�r� is the ith converged KS orbital. The computa-

tional cost of the SCM should be much lower than that of the
iterative self-consistent KS-DFT calculation since the many
iterations in the latter are eliminated. Thus, the SCM is po-
tentially a powerful tool for treating large systems of thou-
sands of atoms and provides impetus to further improve
OF-DFT.18

Although the SCM has been applied to study a wide
range of systems, including metallic clusters,16 fullerenes,19

metallic nanowires,20 and quantum dots,21,22 the accuracy of
SCM calculations remains to be a critical issue. In the SCM,
the Thomas-Fermi3 �TF� or the extended TF KEDFs,23 which
contain the gradient expansion terms up to the fourth order,
are usually employed in OF-DFT calculations.16,17 Due to the
approximate nature of the TF and the extended TF KEDFs,
the resulting density from OF-DFT is usually an average of
the exact KS density, smoothing out the atomic shell struc-
ture. After one iteration of the KS-DFT calculation, the out-
put density from Eq. �4�, �out�r�, begins to show the shell
structure. The SCM then assumes that the total electronic
energy can be accurately evaluated from �OF�r� and �out�r�.
In different versions of the SCM,16,17 several schemes for the
total energy evaluation exist, which are closely related to the
Hohenberg-Kohn-Sham24 �HKS� and the Harris25 functionals
and their second-order corrections.26 In this work, we exam-
ine the subtle differences among these schemes and propose
practical improvements for them.

II. THE STRUTINSKY SHELL CORRECTION METHOD

In the SCM, the exact KS effective potential,
veff

KS��KS��r�, can be written perturbatively as

veff
KS��KS��r� = veff

KS��OF��r� + �v�r� , �6�

where �v�r� represents a small quantum interference treated
as a perturbation on the smooth potential from the OF-DFT
calculation, veff

KS��OF��r�. Expansion of �v�r� in terms of
���r�,

���r� = �KS�r� − �OF�r� , �7�

and retention of only the first-order term yield

�v�r� 
 � �veff
KS����r�

��OF�r��
���r��dr� = 2�C�r,r�����r��� ,

�8�

where C�r ,r�� is given by

C�r,r�� =
1

2
� 1

	r − r�	
+

�vXC����r�
��OF�r��

 . �9�

Here, we introduce the following notation:

�F���
��OF�r�

= ��F���
���r�

�
�=�OF

, �10�

for some functional or function of the electron density, F���.
With the SCM, Ullmo et al. developed a series expan-

sion of the exact KS total energy, based on perturbation
theory �see Ref. 17 for the detailed derivation� as follows:

EKS 
 ESCM = EOF + �E�1� + �E�2�, �11�

�E�1� = �
i

f i�i − �Ts��OF� + ��OF�r�veff
KS��OF��r��� , �12�

�E�2� = 1
2 �R��OF��r��v�r�� = �R��OF��r�C�r,r�����r��� ,

�13�

where EOF is the total energy from the OF-DFT calculation,

EOF = Ts��OF� + EH��OF� + EXC��OF� + ��OF�r�vne�r�� ,

�14�

R��OF��r� is the density residual,

R��OF��r� = �out�r� − �OF�r� , �15�

and the second equal sign in Eq. �13� comes from Eq. �8�.
Note that the above formalism also applies to the itera-

tive KS-DFT calculation,27 in which �OF�r� is replaced by
the input density, �in�r�, of each iteration. Thus, the SCM can
be deemed as a shortcut to the iterative self-consistent KS-
DFT. To be more general, we replace �OF�r� with �in�r� here-
after, except for the discussion of the second-order correc-
tion, �E�2�, from Eqs. �22�–�26�. Moreover, our derivation
hereafter applies to any general XC and KEDF models.

As shown in Ref. 16, to first order, ESCM is just the
Harris functional,25 EHarris,

EHarris��in,�out� = �
i

f i�i − EH��in� + EXC��in�

− ��in�r�vXC��in��r�� . �16�

Furthermore, the second-order correction, �E�2�, is simply
the second-order error of EHarris, as derived by Finnis,26

EHarris − EKS = �R��in��r�C�r,r����in�r�� − �KS�r����

= − �E�2�, �17�

which involves the a priori unknown �KS�r�. Apart from
EHarris, another widely used total energy density functional is
the HKS functional,24 EHKS,
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EHKS��in,�out� = �
i

f i�i + EH��out� − ��out�r�vH��in��r��

+ EXC��out� − ��out�r�vXC��in��r�� . �18�

Following Finnis,26 the second-order error in the HKS func-
tional is given by

EHKS − EKS = �R��in��r�C�r,r����out�r�� − �KS�r���� .

�19�

Taking the difference between Eqs. �19� and �17�, we have

EHKS��in,�out� − EHarris��in,�out�

= �R��in��r�C�r,r��R��in��r��� . �20�

Interestingly, if �KS�r� is replaced by �out�r� in Eq. �13�, the
total energy from the SCM is the same as that from the HKS
functional since �E�2� will be the difference between EHKS

and EHarris. As far as we are aware, this relationship has not
been identified before in all existing versions of the SCM.

In order to obtain an accurate �E�2�, a high-quality ap-
proximation for �KS�r� is required. Ullmo et al. proposed the
following scheme to obtain ���r� �see Eq. �7�� approxi-
mately, by invoking an auxiliary system in the framework of
OF-DFT,17

�Ts���
��KS� �r�

+ veff
KS��KS��r� = �KS� , �21�

which corresponds to an OF-DFT calculation with a fixed
effective potential veff

KS��KS��r�. Here, the output density
�KS� �r� is different from �KS�r� due to the approximate nature
of the KEDF, Ts���. Thus, Eq. �21� is non-self-consistent. For
convenience, we rewrite Eq. �2� as

�Ts���
��OF�r�

+ veff
KS��OF��r� = �OF. �22�

Taking the difference of the above two equations and ex-
panding Ts��� to second order, we get

�v�r� +� �2Ts���
��OF�r���OF�r��

��KS� �r�� − �OF�r���dr�

= �KS� − �OF = �� . �23�

Then, the density residual, R��OF��r�, is used to approximate
the difference between �KS�r� and �KS� �r� as follows:17

�KS�r� − �KS� �r� 
 �out�r� − �OF�r� = R��OF��r� . �24�

Consequently, we have

�KS� �r� − �OF�r� = ��KS�r� − �OF�r�� − ��KS�r� − �KS� �r��


 ���r� − R��OF��r� . �25�

Substitution of Eqs. �8� and �25� into Eq. �23� leads to

�� =� �2Ts���
��OF�r���OF�r��

����r�� − R��OF��r���dr�

+� �veff
KS����r�

��OF�r��
���r��dr�, �26�

which corresponds to Eq. �38� in Ref. 17 and serves as the
basic equation for solving ���r�.17

The above approach has several drawbacks. First, the
central approximation of this scheme, Eq. �24�, is not well
justified. Even if a high-quality KEDF is employed, which
will result in a small �� in Eq. �23�, both sides of Eq. �24�
are not necessarily close to each other at each point in real
space although they can be small in magnitude. Whether this
approximation is sound for densities resulting from OF-DFT
using various KEDFs and of systems under different chemi-
cal environment needs to be further investigated. Second, the
above scheme implies that the external potential is of local
form; otherwise, some inconsistency will arise and further
degrade the approximation in Eq. �24�. Indeed, the above
scheme has been applied on systems described by a local
external potential,17,21,22 whose transferability and quality are
clearly not optimal.11–13 Finally, due to the necessity of
evaluating the second derivative of the KEDF in Eq. �26�,
only the simplest TF KEDF �Ref. 3� is employed in the ap-
plications of the SCM of Ullmo et al., while other more
accurate and complex KEDFs are excluded.17,21,22 A different
path is taken below to avoid such difficulties.

It is clear that an accurate approximation for �KS�r�
plays a vital role in the evaluation of the SCM total energy.
In fact, this is also the main objective in the development of
high-quality density mixing schemes for iterative KS-DFT
calculations.27 At each step, the input density for the next
iteration is generated by optimally mixing the current-step
input and output densities in reciprocal space,

�in
i+1 = �in

i + GR��in
i � , �27�

with the aid of the preconditioning matrix G to reduce the
density residual R��in�.

27 Naturally, one can simply use the
optimal density from the high-quality density mixing
scheme, such as the Pulay method,28 to approximate the ex-
act KS density, and the second-order SCM correction in Eq.
�13� can be computed via

�E�2� = �R��in
i �r��C�r,r����in

i+1�r�� − �in
i �r���� , �28�

which will be used to evaluate the total energy in the SCM in
the next section. Note that the form of the preconditioning
matrix, G, in the Pulay method can admit nonzero off-
diagonal elements in reciprocal space and a detailed illustra-
tion on various density mixing schemes in a plane-wave ba-
sis set can be found in Ref. 27. Finally, Eq. �28� involves the
functional derivative of the XC potential,
�vXC���r�� /��in�r��, which is a highly undesirable quantity
to compute since it is complicated for some sophisticated XC
functionals and the cost is quite high.29,30 Fortunately, Eq. �8�
provides a simpler scheme to evaluate Eq. �28� by recogniz-
ing the following approximation:
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�R��in�r��
�vXC���r���

��in�r� � 
 vXC��out��r�� − vXC��in��r�� ,

�29�

which only introduces numerical errors higher than second
order.

III. NUMERICAL RESULTS AND DISCUSSION

We test different total energy evaluation schemes in the
application of the SCM on the cubic diamond �CD� Si and
the face-centered-cubic �fcc� Ag systems. The local density
approximation31 �LDA� is used in all DFT calculations. In
OF-DFT calculations, the nuclear-electron interaction energy
is computed with the local pseudopotential �LPS� derived
from a bulk environment.11,13 In the previous applications of
the SCM,16,17,19–22 the TF �Ref. 3� or the extended TF
KEDFs �Ref. 23� are usually employed. These KEDFs do not
exhibit the linear response behavior of the free electron gas32

and lead to large errors in OF-DFT calculations.4 In contrast,
the Wang-Govind-Carter �WGC� KEDF �Ref. 10� allows the
correct linear response behavior32 of the free electron gas to
be imposed and is one of the most accurate state-of-the-art
KEDFs for the simple metallic and the covalent
systems.4,10–12 In this work, The WGC KEDF with the opti-
mized parameters12 is used for the CD Si. For the fcc Ag, the
von Weizsäcker-�-Thomas-Fermi13,33 KEDF, which incorpo-
rates a partial contribution from the TF KEDF �Ref. 3� into
the full von Weizsäcker KEDF �Ref. 34�, is employed. The
optimal value for the parameter � in the von Weizsäcker-
�-Thomas-Fermi KEDF is found to be 0.4, which allows the
density from the KS-DFT calculations to be more accurately
reproduced by the OF-DFT density.13 In our OF-DFT calcu-
lations, the optimal density is solved from the TFHK equa-
tion �see Eq. �2�� variationally via a second-order damped
dynamics method4,10 and no analytic form is assumed for the
density. Since the WGC KEDF suffers from the convergence
problem,12 the convergence criterion of the total energy is set
to 0.125 meV/atom for the CD Si system.

A modified ABINIT code35 is used to run the SCM and
KS-DFT calculations, in which the standard Troullier-
Martins nonlocal pseudopotentials36 �NLPSs� are employed.
Fermi-surface smearing with a width of 54 meV is used in
the SCM and KS-DFT calculations for the metallic fcc Ag.
For both systems, we use Kerker’s preconditioning matrix,37

G�q� = A
q2

q2 + q0
2 , �30�

to generate the optimal density at the end of the first itera-
tion. Here, q is the reciprocal space wave vector, and A
=0.8 and q0=1.5 Å−1 from the recommendation of Ref. 27.
A second iteration is carried out for the fcc Ag and Pulay’s
density mixing scheme28 is employed to generate the optimal
density at the end. Those optimal densities are used to evalu-
ate the second-order SCM correction through Eq. �28�.

In Fig. 1, the equations of state �EOSs� of the CD Si and
the fcc Ag produced from the SCM, Harris, and HKS func-
tionals are compared with that from KS-DFT. As illustrated
in Fig. 1�a�, the EOSs of the CD Si from the Harris and HKS
functionals closely resemble that from KS-DFT. However,
they degrade slightly at large cell volumes, where the total
energy is underestimated by the Harris functional and over-
estimated by the HKS functional. This indicates that the den-
sities from OF-DFT also degrade with the increase of the cell
volume. With the optimal density generated from Kerker’s
preconditioning matrix, the SCM almost exactly reproduces
the EOS from KS-DFT. The improvements achieved by our
SCM upon the Harris functional �the first-order SCM result�
demonstrate the importance of the inclusion of the second-
order correction.

Turn to the inset of Fig. 1�b�, we see that at the first
iteration, the EOSs from both the HKS and Harris function-
als contain large errors, especially at large cell volumes. This
is not surprising because the highly localized density distri-
bution of the d electrons of Ag poses even harder challenges
for OF-DFT. Nonetheless, it is clear that these large errors in
the Harris and HKS functionals are significantly reduced by
the SCM. At the second iteration, both the Harris and HKS

FIG. 1. LDA total energies �in eV/at.� vs cell volume V �in Å3� for �a� the CD Si and �b� the fcc Ag. The results from the Harris functional �open circle�, the
HKS functional �open square�, and the SCM �opaque triangle� are compared with those from KS-DFT �solid diamond�. In �b�, both the first iteration �see the
inset� and the second iteration results are illustrated.
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functionals yield much better EOSs, but significant devia-
tions still exit at large cell volumes. It is very encouraging
that the SCM reproduces the EOS from KS-DFT very well
and the total energy at large cell volumes are only slightly
overestimated. For both iterations, the negative errors in the
first-order SCM results, i.e., the Harris functional, are signifi-
cantly reduced by the addition of the second-order correc-
tion.

IV. CONCLUSIONS

In conclusion, we have analyzed the relationship be-
tween the total energy evaluations in the SCM and the
widely used Harris and HKS functionals. It is clear that in
the SCM, the second-order correction for the total energy
plays a key role and its accuracy depends on how well the
exact KS density is approximated. Our new implementation
of the SCM utilizes the optimal density from high-quality
density mixing method. Apparent advantages of our scheme
over that by Ullmo et al. include that our scheme allows
more accurate KEDFs and NLPSs to be employed and its
implementation requires very little extra effort. As shown by
the numerical tests, our SCM achieves further improvements
upon the widely used Harris and HKS functionals. Finally,
our new scheme can also be employed in iterative KS-DFT
calculations to facilitate the convergence of the total energy.
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