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A special feature of the Strutinsky shell correction method �SCM� �D. Ullmo et al., Phys. Rev. B 63,
125339 �2001�� and the recently proposed orbital-corrected orbital-free density functional theory
�OO-DFT� �B. Zhou and Y. A. Wang, J. Chem. Phys. 124, 081107 �2006�� is that the second-order
corrections are incorporated in the total energy evaluation. In the SCM, the series expansion of the
total electronic energy is essentially the Harris functional with its second-order correction.
Unfortunately, a serious technical problem for the SCM is the lack of the exact Kohn-Sham �KS�
density �KS�r� required for the evaluation of the second-order correction. To overcome this obstacle,
we design a scheme that utilizes the optimal density from a high-quality density mixing scheme to
approximate �KS�r�. Recently, we proposed two total energy density functionals, i.e., the
Zhou-Wang-� �ZW�� and the Wang-Zhou-� �WZ�� functionals, for use in the OO-DFT method. If
the two interpolation parameters, � and �, are chosen to allow the second-order errors of the ZW�
and the WZ� functionals to vanish, these two functionals reduce to the Hohenberg-Kohn-Sham
functional with its second-order correction. Again, the optimal density from a high-quality density
mixing scheme is used to approximate �KS�r� in the evaluation of � and �. This approach is tested
in iterative KS-DFT calculations on systems with different chemical environments and can also be
generalized for use in other iterative first-principles quantum chemistry methods. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2821101�

I. INTRODUCTION

Density functional theory �DFT�,1,2 one of the most
widely used first-principles quantum mechanics methods,
provides a rigorous approach to treat the many-body problem
of N interacting electrons. Currently, its widely used imple-
mentation is attributed to Kohn and Sham3 �KS� and plays a
vital role in understanding the properties of matter. In KS-
DFT, one solves the following KS equations �in Hartree
atomic units�:

�− 1
2�2 + veff

KS����r���i�r� = �i�i�r� , �1�

where �i is the eigenvalue of the ith orbital, �i, and the KS
effective potential, veff

KS����r�, contains the Hartree,
exchange-correlation �XC�, and ion-electron potentials,

veff
KS����r� =

�EH���
���r�

+
�Exc���
���r�

+ vne�r�

= vH����r� + vxc����r� + vne�r� . �2�

With an iterative procedure,4 each iteration of the KS-
DFT calculation has two distinct steps. First, one solves
Eq. �1� for �i and �i, with the KS effective potential,
veff

KS��in��r�, constructed from some fixed input density �in�r�.
The output density is generated via

�out�r� = �
i

f i��i�r��2, �3�

where f i is the occupation number of �i. Second, some den-
sity mixing scheme4–6 is employed �in reciprocal space� to
generate the optimal input density �in

i+1, for the next iteration,

�in
i+1 = �in

i + GR��in
i � , �4�

where G is the preconditioning matrix to reduce the density
residual R��in�,

R��in� = �out − �in. �5�

Note that the specific form of the G matrix depends on the
density mixing scheme employed.4 At each iteration, the to-
tal electronic energy is usually evaluated via the Hohenberg-
Kohn-Sham �HKS� functional,7

EHKS��in,�out� = �
i

f i�i − ��out�r��vH��in��r� + vxc��in��r�	


+ EH��out� + Exc��out� , �6�

which always produces an upper bound to the exact total KS
energy EKS. The above process repeats itself until R��in�=0
or the self-consistency is achieved: �out�r� converges to the
exact KS density �KS�r� and EHKS becomes identical to EKS,

EKS��KS� = �
i

f i��i
KS�− 1

2�2��i
KS


+ EH��KS� + Exc��KS� + ��KS�r�vne�r�
 , �7�

where �i
KS�r� is the ith converged KS orbital.
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Despite its great success, KS-DFT methods are still con-
fronted with difficulties in its large-scale applications.8 In the
conventional KS-DFT method, the cost of each iteration
scales as O�N3� due to the orbital orthonormalization. Be-
sides, many iterations are needed to achieve full self-
consistency even with a high-quality density mixing scheme.
With the development of massively parallel9 and linear
scaling8 algorithms, it is feasible for KS-DFT to study sys-
tems of more than 1000 atoms.9,10 Because of the computa-
tional cost of the conventional KS-DFT, the majority of KS-
DFT calculations are still confined to systems fewer than
1000 atoms. On the other hand, in the original implementa-
tion of DFT, i.e., orbital-free �OF� DFT, one-electron orbitals
are completely eliminated and the electron density is utilized
as the sole variable.11 Implemented with plane-wave basis set
and modern fast Fourier transform technique,12 OF-DFT has
acquired quasilinear scaling with the computational cost of
O�N ln N�.13 With the aid of a fast Poisson solver, OF-DFT
can achieve linear scaling in real space.14 However, OF-DFT
calculations have not attained high accuracy consistently,
mainly due to the lack of an accurate kinetic energy density
functional �KEDF�.13

The Strutinsky shell correction method15–18 �SCM� and
the recently proposed orbital-corrected OF-DFT �OO-DFT�
�Refs. 18–20� represent efforts to retain the merits of both
KS-DFT and OF-DFT and avoid their drawbacks. In OO-
DFT, it was further realized that more accurate nonlocal
pseudopotentials21 �NLPSs� can also be used to treat the
valence-core interaction and the drawback of local
pseudopotentials22 �LPSs� required by OF-DFT is
eliminated.18–20 The efficiency of both approaches relies on
two aspects: �i� improving the accuracy of OF-DFT so that
high-quality input density can be obtained for the subsequent
KS-DFT calculations and �ii� designing total energy density
functionals that can achieve fast convergence. In this work,
we focus on the second problem.

II. TOTAL ENERGY EVALUATION

Apart from the HKS functional, another widely used to-
tal energy density functional in KS-DFT was proposed by
Harris based on perturbation theory,23

EHarris��in,�out� = �
i

f i�i − EH��in� + Exc��in�

− ��in�r�vxc��in��r�
 , �8�

which sometimes predicts the total energy accurately even
when the density residual R��in� is still big. However, the
Harris functional is not necessarily more accurate than the
HKS functional and is neither an upper bound nor a lower
bound of EKS.24–26

In 1990, Finnis derived the second-order errors in the
HKS and the Harris functionals,24

EHKS − EKS = �R��in�r��C�r,r����out�r�� − �KS�r��	


+ O���3� , �9�

EHarris − EKS = �R��in�r��C�r,r����in�r�� − �KS�r��	


+ O���3� , �10�

where C�r ,r�� is given by

C�r,r�� =
1

2� 1

�r − r��
+ ��vxc����r�

���r��
�

�in

 . �11�

The difference between the HKS and the Harris functionals
can be then easily estimated via Eqs. �9� and �10�,

EHKS��in,�out� − EHarris��in,�out�

= �R��in�r��C�r,r��R��in�r���
 + O���3� . �12�

Based on Eqs. �9� and �10�, we can define the corrected HKS
�cHKS� and the corrected Harris �cHarris� functionals as the
HKS and the Harris functionals with their own second-order
corrections,

EcHKS��in,�out� = EHKS��in,�out� + �R��in�r��C�r,r��

���KS�r�� − �out�r��	
 , �13�

EcHarris��in,�out� = EHarris��in,�out� + �R��in�r��C�r,r��

���KS�r�� − �in�r��	
 , �14�

respectively. We note that the series expansion of the total
energy in the SCM of Ullmo et al.15 is essentially the cHarris
functional,18

ESCM = EcHarris��in,�out� . �15�

To further cancel the errors in the HKS and the Harris
functionals, we proposed the following Zhou-Wang-�
�ZW�� functional:19

EZW���in,�out� = �1 − ��EHKS��in,�out� + �EHarris��in,�out� ,

�16�

where � is an interpolation parameter. A close inspection of
Eqs. �9�, �10�, and �12� discloses the second-order error of
the ZW� functional,

EZW� − EKS = �R��in�r��C�r,r����out�r�� − �KS�r��	


− ��R��in�r��C�r,r��R��in�r���
 + O���3� .

�17�

The optimal � that renders the right-hand side of the above
equation vanish through second order can be evaluated via

� =
�R��in�r��C�r,r����out�r�� − �KS�r��	


�R��in�r��C�r,r��R��in�r���


�
�R��in�r��C�r,r����out�r�� − �KS�r��	


EHKS − EHarris , �18�

where the second equal sign is due to Eq. �12�. Interestingly,
the ZW� functional reduces to the cHKS functional with the
insertion of Eq. �18� into Eq. �16�.

By subtracting the Roothaan energy,27,28
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ER��in,�out� =
1

2�R��in�r��R��in�r���
�r − r�� � , �19�

from the HKS functional, we recently proposed the Wang-
Zhou �WZ� functional,20

EWZ��in,�out� = EHKS��in,�out� − ER��in,�out�

= �
i

f i�i − EH��in� + Exc��out�

− ��out�r�vxc��in��r�
 . �20�

The WZ functional always produces a lower total energy
than does the HKS functional since the Roothaan energy is
always positive.27,28 We also found that the WZ functional
usually converges to EKS from below;20 however, whether it
is a lower bound to EKS remains to be proven. A linear mix-
ing of the HKS and the WZ functionals leads to the Wang-
Zhou-� �WZ�� functional,20

EWZ���in,�out� = �1 − ��EHKS��in,�out� + �EWZ��in,�out�

= EHKS��in,�out� − �ER��in,�out� , �21�

with the mixing parameter �. From Eqs. �9� and �21�, we can
estimate the second-order error of the WZ� functional,

EWZ� − EKS = �R��in�r��C�r,r����out�r�� − �KS�r��	


− �ER��in,�out� + O���3� . �22�

The optimal � value that renders the second-order error in
EWZ� vanish is then given by

� =
�R��in�r��C�r,r����out�r�� − �KS�r��	


ER��in,�out�
. �23�

Again, the WZ� functional reduces to the cHKS functional
with the optimal � defined above. Thus, we have the follow-
ing identity:

EZW���in,�out� = EWZ���in,�out� = EcHKS��in,�out� , �24�

for the optimal values of � and � defined in Eqs. �18� and
�23�.

Although the incorporation of the second-order correc-
tions improves the accuracy of the total energy evaluation, a
practical difficulty is the lack of the a priori unknown exact
KS density �KS�r�, for which a good approximation must be
adopted. In the work of Ullmo et al., a scheme was devised
to obtain �KS�r� by invoking an auxiliary system in the
framework of OF-DFT.15 However, we found that their
scheme suffers from several drawbacks.18 Benoit et al. pro-
posed another perturbative scheme to approximate �KS�r�,
but the computation of the functional derivative of the XC
potential, �vxc����r� /��in�r��, is quite involved and expen-
sive for some sophisticated XC functionals.29,30

On the other hand, high-quality density mixing schemes,
such as the residual minimization method, direct inverse in
the iterative space,4,5 are quite robust for iterative KS-DFT
calculations. At the ith iteration, a high-quality density mix-
ing scheme �see Eq. �4�� is able to produce accurate input
density for the next iteration, �in

i+1�r�, which is usually much
better than the current-iteration input and output densities.
Consequently, the optimal input density �in

i+1�r� from such

high-quality density mixing schemes can then be directly
utilized to approximate �KS�r� with very little extra compu-
tational and coding effort. Our previous work has demon-
strated that this simple approach produces accurate second-
order correction for the Harris functional.18 In this work, we
further generalize this method to the evaluation of the cHKS
functional. As will be shown later, the amount of improve-
ment that can be achieved by the cHKS and the cHarris
functionals upon the widely used HKS and Harris function-
als depend strongly on the quality of �in

i+1�r�.
Finally, we need to compute the functional derivative of

the XC potential, �vxc����r� /���r��, in the evaluation of
C�r ,r�� in Eq. �11�. To avoid the above mentioned difficulty
in its direct numerical evaluation, we adopt the following
finite-difference approximation:18

�R��in�r����vxc����r��
���r�

�
�in

�
� vxc��out��r�� − vxc��in��r�� , �25�

which only introduces numerical errors higher than second
order.

III. NUMERICAL RESULTS AND DISCUSSION

We test our new schemes in KS-DFT calculations on the
following systems: the metallic Al–Si binary alloy, the cubic
diamond �CD� Si vacancy and �100� surface. A cubic face-
centered-cubic supercell containing 32 atomic sites is used
for the Al–Si alloy, in which five Si atoms are put at ran-
domly selected atomic sites and 27 Al atoms occupy the
remaining sites. This Al27Si5 system approximately corre-
sponds to an Al-xSi alloy with Si doping rate x�15%. A 2
�2�2 supercell containing 63 atoms and one vacancy is
used for the CD Si vacancy. The CD Si �100� surface con-
tains a five-layer slab with two atoms per layer and the
vacuum has the same dimension as the slab. The local den-
sity approximation31 �LDA� is used in all DFT calculations.

The initial density for KS-DFT calculations is obtained
from OF-DFT calculations using the Wang-Govind-Carter
KEDF,32 which involves three parameters �, �, and 	. We
set the values of �� ,�		 to be � 5

6 

�5
6
	

2.7 for the metallic
Al–Si alloy and � 5

6 

�5
6
	

3.6 for the CD Si vacancy and sur-
face. The two different sets of parameters used here are
found to be optimal for metallic and semiconducting sys-
tems, respectively.32,33 The Goodwin-Needs-Heine LPS is
used for Al,34 while the LPS derived from a bulk
environment22 are employed for Si. More computational de-
tails of OF-DFT calculations are given in Refs. 19 and 20.

A modified ABINIT code35 is used to run KS-DFT calcu-
lations, in which the standard Troullier-Martins NLPS �Ref.
36� is used. The kinetic energy cutoff for the plane-wave
basis set is chosen to be 760 eV for all DFT calculations. For
the CD Si vacancy, we find that it is adequate to only employ
the � point for the Brillouin-zone �BZ� sampling.37 For the
CD Si �100� surface, a 6�6�1 Monkhorst-Pack grid38 with
28 irreducible k points is used for the BZ sampling.
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At the end of the first iteration of a KS-DFT calculation,
the following Kerker’s formula39 �diagonal in reciprocal
space� is used for the preconditioning matrix G in Eq. �4� for
the reciprocal space wave vector q:

G�q� = A
q2

q2 + q0
2 , �26�

where A=0.8 and q0=1.5 Å−1.4 After the first iteration, Pu-
lay’s scheme5 is employed for density mixing in subsequent
iterations of the KS-DFT calculation.

Figure 1 depicts the total energies of the Al–Si alloy at
different cell volumes obtained from OF-DFT, fully con-
verged KS-DFT, and one-iteration OO-DFT calculations.
OF-DFT leads to significant errors and only qualitatively re-
produces the KS-DFT results. The overestimation of the total
energy by OF-DFT becomes more severe when the cell vol-
ume increases. In OO-DFT, we compare the results from the

HKS, the Harris, the cHKS, and the cHarris functionals. At
different cell volumes, the HKS and the Harris functionals
slightly overestimate and underestimate the total energies,
respectively. Both the HKS and the Harris functionals ad-
equately reduce the errors from OF-DFT and yield good total
energies but still with increased numerical errors for bigger
cell volumes. On the other hand, it is amazing to see that
both the cHKS and the cHarris functionals almost exactly
reproduce the total energies of fully converged KS-DFT with
just one iteration.

In Fig. 2, the convergence behaviors of the cHKS and
the cHarris functionals are compared with those of the HKS
and the Harris functionals. Being consistent with our previ-
ous assessment in Eq. �24�, Fig. 2 clearly shows that the
ZW� and the WZ� functionals are essentially the cHKS
functional. For the CD Si vacancy �Fig. 2�a��, the Harris
functional is usually slightly more accurate than the HKS
functional. In contrast, the convergence pattern of the cHKS
and the cHarris functionals are almost identical, which im-
plies that the contribution of the second-order correction in
the cHKS functional is a bit larger than that in the cHarris
functional. Moreover, both the cHKS and the cHarris func-
tionals are usually more accurate than the HKS and the Har-
ris functionals by one to two orders of magnitudes except at
the second and fifth iterations. This is not surprising because
the Pulay density mixing method5 occasionally generates less
accurate input density �in

i+1�r�, which delivers little improve-
ment. Of course, any future developments in devising better,
faster, more stable generally applicable density mixing
schemes will certainly enhance the performance of the cHKS
and the cHarris functionals for this kind of difficult cases.
Before such superpowerful density mixing schemes become
available, we have no choice but to rely on the Pulay density
mixing method,5 which is widely regarded as the present
most robust general-purpose scheme of generating high-
quality initial guesses of density, orbitals, and wave function
for the next iteration in a self-consistent field calculation.4

Also notice that the errors in the cHKS and the cHarris func-

FIG. 1. LDA total energy �in eV� vs cell volume �in Å3� for the Al27Si5

alloy. The results from OF-DFT �triangle right�, one-iteration OO-DFT, and
the self-consistent KS-DFT �solid diamond� are compared. In OO-DFT, we
use the HKS �circle�, the Harris �square�, the cHKS �triangle up�, and the
cHarris �triangle down� functionals for the total energy evaluation. The
cHKS, the cHarris, and the converged KS total energies overlap one another.

FIG. 2. Convergence of total energies �in eV� evaluated from the HKS �pluses�, the Harris �crosses�, the cHKS �opaque squares�, and the cHarris �solid
diamonds� functionals during the self-consistent iterations of KS-DFT calculations for �a� the CD Si vacancy and �b� the CD Si �100� surface. The cHKS
functional also represents the ZW� and the WZ� functionals and the cHarris functional yields identical result to the SCM. In �a�, the cHKS and the cHarris
curves overlap each other.

084101-4 B. Zhou and Y. A. Wang J. Chem. Phys. 128, 084101 �2008�

Downloaded 26 Feb 2008 to 137.82.31.225. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



tionals are within 1 meV at the fourth iteration, whereas
three more iterations are needed for the HKS and the Harris
functionals to reach the similar accuracy.

For the CD Si �100� surface, the convergence patterns of
the four total energy functionals are more complicated as
reflected by the fluctuations in Fig. 2�b�. Nonetheless, we
again observe that the cHKS and the cHarris functionals are
usually better than the HKS and the Harris functionals by
one or two orders of magnitude. However, the total energies
from the cHKS and the cHarris functionals evince slightly
different accuracies. The errors of the cHKS and the cHarris
functionals are below 1 meV at the fourth iteration and after
the fifth iteration, respectively. Interestingly, the cHarris
functional converges faster and more smoothly than does the
cHKS functional.

IV. CONCLUSIONS

In conclusion, two new functionals, i.e., the cHKS and
the cHarris functionals, which include the second-order cor-
rections, are proposed for the total electronic energy evalua-
tion in iterative KS-DFT calculations. It is further realized
that with the optimal mixing parameters, � and �, defined in
this work, the recently proposed ZW� and WZ� functionals
are essentially the same as the cHKS functional. A practical
scheme is then designed for the evaluation of the second-
order corrections in the cHKS and the cHarris functionals.
The key point in our new scheme lies in that the optimal
input density from a robust density mixing scheme is used to
approximate the exact KS density. For the metallic alloy sys-
tem, the cHKS and the cHarris functionals further reduce the
errors in the HKS and the Harris functionals, and both new
functionals almost exactly reproduce the converged KS total
energies with only one iteration of OO-DFT calculation. In
iterative KS-DFT calculations for highly inhomogeneous
surface and vacancy systems, the cHKS and the cHarris
functionals usually yield more accurate total energies than
the widely used HKS and Harris functionals by one to two
orders of magnitude. This approach constitutes a practical
generalization of the SCM and the OO-DFT methods and
can also be employed in other iterative ab initio quantum
chemistry methods.
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