Dynamics of the Staudinger Reaction

Wei Quan Tian ${ }^{\dagger}$ and Yan Alexander Wang*
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

Received October 14, 2004

Abstract

The Staudinger reaction of phosphane and azide has been investigated by Atomcentered Density Matrix Propagation (ADMP) approach to ab initio molecular dynamics (AIMD) in combination with molecular orbital analysis within density functional theory. At room temperature, the reaction pathway with the cis initial attack dominates the Staudinger reaction. Electrostatic interaction, charge transfer, and covalent overlap are responsible for the initial attack and for the system to overcome the initial reaction barrier. The rotation of PH_{3} and PH vibrations facilitate the isomerization of the system from cis intermediate to the last transition state, which indicates that small substituent groups on phosphane can facilitate the last stage of the Staudinger reaction. During the course of the reaction, the change of the average polarizability correlates positively to the change of the potential energy of the system, which clearly suggests that polar solvents can facilitate the overall reaction by stabilizing all transition states and reducing all reaction barriers.

I. Introduction

Staudinger reactions are widely utilized in organic chemistry ${ }^{1-4}$ and biology. ${ }^{5}$ In a Staudinger reaction, phosphane (A) reacts with azide (B) to produce phosphazene (\mathbf{C}) and nitrogen gas ${ }^{1}$ (as shown in Scheme 1). With density functional theory (DFT), we investigated reaction mechanisms of Staudinger reactions and identified four initial reaction pathways. ${ }^{6}$ The cis-reaction pathway is the most accessible for Staudinger reactions. ${ }^{6-8}$ Both of the cis- and trans-intermediates were observed in experiments; ${ }^{9-11}$ the existence of the transintermediate is the result of isomerization from the cisintermediate. ${ }^{6,8}$ The initial trans-reaction barrier is much higher than the initial cis-reaction barrier. ${ }^{6,8}$ The remaining two initial reaction pathways, gamma and concerted attacks (as shown in Scheme 1), were also studied. ${ }^{6}$ The concerted initial reaction can be realized with appropriate substituent groups on phosphane and azide. The one-step gamma initial reaction has a reaction barrier lower than the trans-initial reaction barrier but higher than the cis-initial reaction barrier.

[^0]The trans-initial reaction is always unfavorable because there is only electrostatic attraction between P and N_{α} to stabilize the transition state, while P can have electrostatic attractions with both N_{α} and N_{γ} in the cis- and concerted transition states. ${ }^{6}$ From a long distance (e.g. $4 \AA$), P in phosphane has electrostatic attractions with N_{α} and N_{γ} and electrostatic repulsion with N_{β} in both the initial cis- and concerted transition states. The electrostatic attraction is much stronger than the electrostatic repulsion as indicated by the natural charges of these atoms (as shown in Scheme 1). In the initial concerted transition state, the large distortion of N_{3} backbone in azide from nearly linear structure is an unfavorable factor compared with the more open initial cis-transition state. However, the preference of the cis-initial attack has not been fully understood dynamically. Even with conventional quantum mechanical (QM) calculations on the stationary points of the potential energy surface (PES), the dynamical information of preference of the initial reaction pathway is not clear, especially about the interaction of phosphane with azide during the initial reaction phase.

After the initial reaction, two possible cis-intermediates (cis or cisclose as illustrated in Scheme 2) form. Among these two cis-intermediates, only the cis can isomerize to a transintermediate (trans). ${ }^{6}$ Both cis-intermediates can proceed forward to form another intermediate (int) and to reach the

Scheme 1. Illustration of the Staudinger Reaction of Phosphane $\left(\mathrm{PR}_{3}\right)+$ Azide $\left(\mathrm{N}_{3} \mathrm{R}^{\prime}\right)^{a}$

${ }^{a}$ The electronegativities are from ref 12 ; the charges are from nature charge analysis.

Scheme 2. Possible Reaction Pathways for the Staudinger Reaction ${ }^{\text {a }}$

${ }^{a}$ Adapted from ref 6.
final products (phosphazene and N_{2}). ${ }^{6}$ Our studies ${ }^{6}$ and other theoretical works ${ }^{7,8}$ indicated that the PES is very flat at the N_{2} dissociation region around TS3 (as shown in Scheme 2). Intrinsic reaction coordinate ${ }^{13}$ model can locate the minimum energy reaction pathway starting from a transition state; however, the dynamic detail of a reaction pathway starting from a minimum could not be explored with this model.

Molecular dynamics (MD) involving propagation of nuclei in molecule on the PES by solving Newton's equation of motion provides rich information about reactivity and dynamics of a system. The PES could be obtained by fitting to experimental or computational data. However, for polyatomic systems, the experimental data for dynamics are sparse and PES fitting is not a trivial task. Empirical force field has gained wide popularity especially in MD simulations of large systems (e.g. in biology, ${ }^{14,15}$ solid-state physics and surface science ${ }^{16}$). Nonetheless, when the quantum effect is important, classical trajectory simulation with the empirical force field cannot produce qualitatively correct result. QM force field, also known as ab initio MD (AIMD) or quantum mechanical MD (QMMD), is a natural choice to overcome this difficulty. In AIMD, (classical) nuclei move on the
electronic PES whose energy and derivatives are calculated directly from ab initio methods. Born-Oppenheimer MD (BOMD) ${ }^{17}$ methods and extended Lagrangian MD (ELMD) methods are two major flavors of AIMD. In BOMD, the electronic structure calculation is fully converged at each nuclear configuration. While in ELMD, both the electronic wave function and the nuclei are treated as dynamical variables and are propagated simultaneously. The timeconsuming feature of BOMD refrains its broad applications. ELMD, which produces comparable dynamics of nuclei to that from BOMD but with lower cost, has been embraced in both physics and chemistry communities, especially since the seminal work of Car and Parrinello. ${ }^{18}$ Car-Parrinello MD (CPMD) is a prototype of ELMD. Aimed to treat condensed phases, CPMD employs pseudopotentials and a large number of plane-wave basis functions, which are natural choices for describing condensed phases. ${ }^{19}$ It is possible to use atomcentered Gaussian basis function to carry out CPMD, ${ }^{20-22}$ although a strict energy conservation problem remains to be solved. ${ }^{20}$ In molecular systems of chemical reactions in solution or in gas phase, atom-centered basis functions are more chemically intuitive choices due to their localized nature. Recently, atom-centered density matrix propagation (ADMP) based MD emerged ${ }^{23-26}$ and paved a new way to perform AIMD simulations. This new method provides a "novel and robust computational tool to perform AIMD", ${ }^{24}$ especially for chemical reactions. Kohn-Sham molecular orbitals are propagated in conventional CPMD, ${ }^{20-22}$ while it is the single-particle density matrix that is propagated with nuclei in ADMP. ${ }^{23-26}$ Of course, other variables can also be propagated in AIMD. ${ }^{27}$

In present work, with ADMP, we will study the details of the initial Staudinger reaction of $\left(\mathrm{PH}_{3}+\mathrm{N}_{3} \mathrm{H}\right)$ and subsequent isomerization of the cis-initial intermediate. The details of the reaction mechanisms of this reaction have been reported before. ${ }^{6-8}$ In combination with molecular electronic theory, we will shed lights on the detailed molecular orbital interactions of the two reactants in the initial reaction stage.

II. Computational Methods

The initial applications ${ }^{25}$ and analysis ${ }^{26}$ on ADMP manifested that ADMP produces a similar PES to that of BOMD while possess some advantages over the plane-wave based CPMD, e.g. ADMP has no systematic bias due to the fictitious electronic mass in computing molecular properties. ${ }^{25}$ In ADMP with orthonormal basis, an extended Lagrangian for a system is ${ }^{23}$

$$
\begin{equation*}
£=\frac{1}{2} \operatorname{Tr}\left(\mathrm{~V}^{\mathrm{T}} \mathrm{MV}\right)+\frac{1}{2} \mu \operatorname{Tr}(\mathrm{WW})-\mathrm{E}(\mathrm{R}, \mathrm{P})-\operatorname{Tr}[\Lambda(\mathrm{PP}-\mathrm{P})] \tag{1}
\end{equation*}
$$

where $\mathbf{M}, \mathbf{R}, \mathbf{V}, \mathbf{P}, \mathbf{W}$, and μ are the nuclear masses, nuclear positions, nuclear velocities, density matrix, density matrix velocity, and fictitious mass for the electronic degrees of freedom, respectively. The first term in eq 1 is the kinetic energy of nuclei; the second term is the kinetic energy for the electronic degrees of freedom; the third term is the electronic energy of the system; and the fourth term is a constraints on the total number of electrons N_{e} and on the
idempotency of the density matrix with a Largrangian multiplier matrix Λ. In the orthonormal basis, the EulerLagrange equations of motion of the nuclei and of the density matrix are ${ }^{23}$

$$
\begin{equation*}
\mathbf{M} \frac{d^{2} R}{d t^{2}}=-\left.\frac{\partial E(R, P)}{\partial R}\right|_{P} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu \frac{d^{2} P}{d t^{2}}=-\left[\left.\frac{\partial E(R, P)}{\partial P}\right|_{R}+\Lambda P+P \Lambda-\Lambda\right] \tag{3}
\end{equation*}
$$

The nuclei and density matrix are propagated with eqs 2 and 3, respectively. In CPDM, the molecular orbitals rather than the density matrix are propagated ${ }^{19}$

$$
\begin{equation*}
\mu \frac{d^{2} \psi}{d t^{2}}=-\left.\frac{\partial E(R, \psi)}{\partial \psi}\right|_{R}+\text { constraints } \tag{4}
\end{equation*}
$$

Proper choosing of the fictitious mass of the electronic degrees of freedom and time step in ADMP simulations ensures a good energy conservation and the adiabaticity between the nuclear and electronic motions. ${ }^{23,24}$ One important advantage of ADMP over the traditional CPMD is that ADMP can treat the isotope effect of hydrogen and deuterium, ${ }^{24,25}$ which becomes an important dynamical factor in processes involving hydrogen atoms, e.g. proton transfer and PH bond vibrations and rotations. In ADMP simulations, the initial velocities of nuclei are randomly generated to simulate Boltzmann distribution. ${ }^{23-25}$ The kinetic energy of a system also affects the adiabaticity between nuclei and electrons; this kinetic energy should be much smaller than the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the system to ensure that the dynamics is simulated close to the Born-Oppenheimer ground-state surface, well below the lowest excited electronic state. ${ }^{24,25}$ Usually a thermostating method, such as Nosé-Hoover thermostats, ${ }^{28}$ on the electronic subsystem is applied when the kinetic energy of the system is too high. MD simulation provides complementary information about the thermodynamic, dynamical properties, and microscopic motions of nuclei of a chemical reaction. However, due to the computing effort on the electronic energy of the system, ADMP is time-consuming for large systems, though the ONIOM model can be applied in some cases. ${ }^{29}$ Furthermore, due to the nature of AIMD, the zeropoint vibrational energy (ZPVE) correction is not incorporated for the PES.

Quantum chemical package Gaussian 03^{30} has been employed for the calculations. Various stationary points (e.g. cisTS, gammaTS, cis, TS1, TS2, and TS3) on the PES from QM calculations ${ }^{6}$ are used as starting points for MD simulations for the Staudinger reaction. To be consistent with previous QM calculations, B3LYP ${ }^{31,32}$ with $6-31 \mathrm{G}(\mathrm{d})$ basis set is used for MD simulations. To get appropriate PES for the TS3 region, the ZPVE correction is included in the static QM calculations. ${ }^{6}$ However, no ZPVE corrections are considered in ADMP simulations in our present studies. The performance of B3LYP with the $6-31 \mathrm{G}(\mathrm{d})$ basis set ${ }^{6,33}$ gives
us confidence in applying this method in present MD simulations.

The coordinates of the system in the Staudinger reaction during ADMP simulations are extracted for single point QM calculations with natural bond orbital (NBO) ${ }^{34}$ and molecular orbital analysis. In ADMP simulations, two different conditions are employed, adiabatic MD and thermostatic MD. In adiabatic MD, once the system is given an initial kinetic energy, the total energy is conserved during the entire simulation; most of the ADMP simulations are carried out under this condition. In thermostatic MD simulations, the kinetic energy of the system is kept constant. In all ADMP simulations, no ZPVE correction is made. For convenience, the initial kinetic energy for each ADMP simulation is chosen to be $0.01 \mathrm{eV}(6.3 \mathrm{kcal} / \mathrm{mol})$ for transition states or a multiple of 0.01 eV for minima. All of the kinetic energies are chosen to be much smaller than the HOMO-LUMO gap of all the stationary points investigated to keep the trajectories close to the ground-state PES and well below any excited-state PES. The smallest HOMO-LUMO gap is 3.08 eV (71.0 $\mathrm{kcal} / \mathrm{mol}$) for transTS, which is much larger than any of the initial kinetic energies added to the system at the stationary points. Last, due to the finite number of trajectories we have sampled, we do not claim that our results are statistically accurate; rather we are confident about the qualitative understanding derived from the ADMP simulations presented hereafter.

III. Results and Discussion

A. gammaTS of $\mathbf{P H}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \mathbf{H}$. Table 1 and Scheme 3 display the energies and reaction profiles of the Staudinger reaction, respectively. The ADMP simulations starting from gammaTS are performed with time step 0.2 fs for 400 fs ; the system has $6.3 \mathrm{kcal} / \mathrm{mol}(0.01 \mathrm{eV}$, another value could also be chosen) initial kinetic energy with fictitious electronic mass of $0.1 \mathrm{amu} \mathrm{Bohr}^{2}$. These ADMP simulations end with either the reactants $\left(\mathrm{PH}_{3}+\mathrm{N}_{3} \mathrm{H}\right)$ or the products $\left(\mathrm{N}_{2}+\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}\right)$ with gammaTS bridging in between.
B. cisTS of $\mathbf{P H}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \mathbf{H}$. With the same conditions, ADMP simulations are carried out for cisTS for 2 ps . The change of potential energy of the system during simulations and average polarizability of some selected points are shown in Figure 1. In the reverse reaction direction to reactants PH_{3} and $\mathrm{N}_{3} \mathrm{H}$, cisTS completely dissociates to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ around 84 fs as shown in Figure 1; at this stage, the PN_{α} and PN_{γ} distances are 4.4 and $4.1 \AA$, respectively. After the dissociation, the potential energy of the system keeps constant with small fluctuations. The dissociation energy is 21 $\mathrm{kcal} / \mathrm{mol}$, i.e. the system needs $21 \mathrm{kcal} / \mathrm{mol}$ to initialize the Staudinger reaction; this is in good agreement with our recent DFT calculations if the ZPVE correction is not included. ${ }^{15}$

The average polarizability decreases along the reverse reaction trajectory; this indicates that solvent effects on the Staudinger reaction $\left(\mathrm{PH}_{3}+\mathrm{N}_{3} \mathrm{H}\right)$ will get stronger as PH_{3} approaches $\mathrm{N}_{3} \mathrm{H}$ in the initial attack. The average polarizability of the system begins to increase at 40 fs , when the strong interaction between PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ occurs. (This is further verified by charge transfer between these two reactants in Figure 11.)

Table 1. HOMO-LUMO Gaps (in eV) and the Relative Electronic Energies (with and without the ZPVE Correction) and the Relative Gibbs Free Energies (at 1 atm and 298 K) of the Stationary Points along the Staudinger Reactiona

	gammaTS	transTS	cisTS	trans	TS1	cis	TS2	int	TS3	products
HOMO-LUMO gap	4.24	3.08	5.07	5.35	4.90	5.80	5.56	5.54	5.67	
electronic (no ZPVE)	32.8	48.2	21.6	25.5	32.3	15.8	26.4	25.6	27.4	-30.1
electronic (with ZPVE)	33.4	50.3	23.9	29.3	36.0	19.9	29.4	29.0	28.8	-29.2
Gibbs	41.9	59.6	33.2	38.7	45.7	29.7	39.5	38.8	39.3	-28.8

${ }^{a}$ All relative energies are measured with respect to that of the reactants and in kcal/mol.

Scheme 3. Reaction Profiles of the Staudinger Reaction of $\mathrm{PH}_{3}+\mathrm{N}_{3} \mathrm{H}^{a}$

${ }^{a}$ The numbers are relative electronic energy with the ZPVE correction (in $\mathrm{kcal} / \mathrm{mol}$) of stationary points (measured with respect to that of the reactants).

Figure 1. The relative potential energy (in $\mathrm{kcal} / \mathrm{mol}$) of the system to cisTS during ADMP simulation of 2 ps . The inserts are the average polarizability (in Bohr${ }^{3}$) of system during the first 90 fs simulation and the relative potential energy for the first 100 fs, respectively.

The potential energy, geometric changes, and molecular orbital (MO) interactions between $\mathrm{N}_{3} \mathrm{H}$ and PH_{3} of some selected points for the first 100 fs simulations are shown in Figure 2. From the geometries of the five points shown in Figure 2, one notices that bond distance difference between $\mathrm{R}_{\mathrm{PN} \alpha}$ and $\mathrm{R}_{\mathrm{PN} \gamma}$ increases as PH_{3} approaches $\mathrm{N}_{3} \mathrm{H}$. This means that the initial approach of PH_{3} to $\mathrm{N}_{3} \mathrm{H}$ for the cis attack is not directly toward N_{α} : P approaches rather simultaneously to N_{α} and N_{γ}. As getting close to $\mathrm{N}_{3} \mathrm{H}, \mathrm{PH}_{3}$ moves attractively toward N_{α} in $\mathrm{N}_{3} \mathrm{H}$ due to the electrostatic attraction and covalent interaction. It is very evident from the structure and molecular orbtials of the five points in Figure 2 that the motion of PH_{3} approaching $\mathrm{N}_{3} \mathrm{H}$ is translation concurrently with rotation of PH_{3}. Due to the relative orientation of PH_{3} to $\mathrm{N}_{3} \mathrm{H}$, the molecular orbital overlap begins to turn on at 40 fs with $\mathrm{R}_{\mathrm{PN} \alpha}$ and $\mathrm{R}_{\mathrm{PN} \gamma}$ distances of 2.9 and $3.2 \AA$, respectively, as PH_{3} approaches
$\mathrm{N}_{3} \mathrm{H}$; the electrostatic attraction should play a prominent role for the initial approach of PH_{3} to $\mathrm{N}_{3} \mathrm{H}$ (more discussed later).

At point \mathbf{E} in Figure 2, there is no covalent interaction (MO overlap) between PH_{3} and $\mathrm{N}_{3} \mathrm{H}$, and the three MOs shown are the lone pair electrons of N and P . As the two molecules get closer at \mathbf{D}, the MOs of the lone pair electrons on P and N adjust themselves according to the relative orientation of PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ and no MO overlap occurs. When the two molecules get closer at point \mathbf{C}, orbital overlap and charge transfer between PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ occur as indicated by the relevant MOs. P donates electrons to N_{γ} from its lone pair, and N_{α} back-donates the lone pair to P through orbital overlap. This explains the strong interaction of P with both N_{α} and N_{γ} in cisTS. As these two molecules get closer as manifested by points \mathbf{B} and \mathbf{A}, the covalent interactions get stronger (more MOs for $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are shown in Figure 2 s of the Supporting Information), which help to overcome the initial reaction barrier to reach intermediate, cis. The empty d orbitals on P have very limited contribution to the interaction of PH_{3} with $\mathrm{N}_{3} \mathrm{H}$ according to the NBO analysis.

In another ADMP simulation of cisTS with the same conditions (time step 0.2 fs and $6.3 \mathrm{kcal} / \mathrm{mol}$ initial kinetic energy) for $2 \mathrm{ps}, \mathrm{PH}_{3}$ attacks N_{α} and forms PN_{α} bond after 12 fs , thus rendering the formation of the cis intermediate. The system, trapped in the cis potential well, fluctuates around the structure of cis after reaching cis during the 2 ps ADMP simulations.

The same conditions are applied to ADMP simulations of cis, with $6.3 \mathrm{kcal} / \mathrm{mol}$ of initial kinetic energy. Under this condition, the system is trapped in the cis potential well for 4 ps ; this indicates that the system does not have enough energy in the reaction coordinates to overcome the reaction barriers to return to reactants or to tautomerize to trans or isomerizes to int. Increasing the initial kinetic energy to 25.2 $\mathrm{kcal} / \mathrm{mol}(0.04 \mathrm{eV} / \mathrm{mol})$ in an ADMP simulation of 2 ps starting from cis drives the system out of the cis potential well. The changes of potential energy of the system along the trajectory are shown in Figure 3. The system tries to open the $\mathrm{PN}_{\alpha} \mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ four-membered ring to reach a local maximum \mathbf{A} at 54 fs (as shown in Figure 3) with $\mathrm{A}_{\mathrm{PN} \alpha N \beta}=$ $145^{\circ}, \mathrm{A}_{\mathrm{N} \alpha \mathrm{N} \beta \mathrm{N} \gamma}=126^{\circ}$, and $\mathrm{R}_{\mathrm{PN} \gamma}=3.4 \AA$ and then returns to cis and moves out of the cis potential well to reach the structure at point B similar to TS2 at 136 fs . The system then repeats the $\mathrm{PN}_{\alpha} \mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ ring-opening and ring-closing motions till 300 fs . There is a small potential energy plateau after 300 fs of ADMP simulation, where PH_{3} rotates about the PN_{α} bond from 300 to 370 fs resembling cis \rightarrow TS2 motion ($\mathbf{D} \rightarrow \mathbf{E}$). After 370 fs, the system returns to cis and internally rotates about the $\mathrm{N}_{\alpha} \mathrm{N}_{\beta}$ bond to reach 35° for the dihedral angle $\mathrm{D}_{\mathrm{PN} \alpha \mathrm{N} \beta \mathrm{N} \gamma}$ at point \mathbf{F}. Along with this internal rotation, the system stretches $\mathrm{PN}_{\alpha}, \mathrm{N}_{\alpha} \mathrm{N}_{\beta}$, and $\mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ bonds

Figure 2. The relative potential energy (in $\mathrm{kcal} / \mathrm{mol}$) of the system to cisTS during the first 100 fs of a total 2 ps ADMP simulation with 0.2 fs time step and $6.3 \mathrm{kcal} / \mathrm{mol}$ initial kinetic energy. The pair of left and right numbers in the structures are the bond distances of \mathbf{P} to N_{α} and N_{γ}, respectively. Simulation times for the selected points are \mathbf{A} at $0 \mathrm{fs}, \mathbf{B}$ at $10 \mathrm{fs}, \mathbf{C}$ at $20 \mathrm{fs}, \mathbf{D}$ at 30 fs, and \mathbf{E} at 40 fs. Only those molecular orbitals relevant to the interaction between PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ are shown (from left to the right): HOMO-2, HOMO-1, and HOMO for point E, HOMO-2 and HOMO for points \mathbf{D} and \mathbf{C}, and HOMO-2 and HOMO-1 for points \mathbf{B} and \mathbf{A}. HOMO-n is the nth orbital below the HOMO. The molecular orbitals are drawn with isovalue $0.04 \AA^{-3}$. More molecular orbitals for points $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are shown in Figure 2 s in the Supporting Information.

Figure 3. The relative potential energy (in $\mathrm{kcal} / \mathrm{mol}$) of the system to cis during the first 1 ps of a total 2 ps ADMP simulation, starting from cis with 0.2 fs time step and 25.2 $\mathrm{kcal} / \mathrm{mol}$ initial kinetic energy. Simulation times for the selected points are \mathbf{A} at $56 \mathrm{fs}, \mathbf{B}$ at $136 \mathrm{fs}, \mathbf{C}$ at $223 \mathrm{fs}, \mathbf{D}$ at $309 \mathrm{fs}, \mathbf{E}$ at $330 \mathrm{fs}, \mathbf{F}$ at $416 \mathrm{fs}, \mathbf{G}$ at $564 \mathrm{fs}, \mathbf{H}$ at 679 fs , and \mathbf{I} at 743 fs.
from 410 to 600 fs to prepare for the right energy and momentum distributions for PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ dissociation as represented by point \mathbf{G}. After 640 fs , the system begins to dissociate back to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$, as indicated by the drastic drop of potential energy starting from point \mathbf{H}. At 740 fs, the system completely dissociates to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ with $\mathrm{R}_{\mathrm{PN} \alpha}$ $=4.2 \AA$ and $\mathrm{R}_{\mathrm{PN} \gamma}=3.3 \AA$, as indicated by point \mathbf{I}.
C. TS1 of $\mathbf{P H}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \mathbf{H}$. If the ADMP simulations start from TS1 (A) (as shown in Figure 4), the system comes to trans (B) and then goes to cis (D) by overcoming TS1 (C). The reaction barrier from trans to cis is $7.5 \mathrm{kcal} / \mathrm{mol}$, and the reverse barrier is $11.9 \mathrm{kcal} / \mathrm{mol}$ from cis to trans, which are in good agreement with our previous QM calculations. ${ }^{6}$ The deviation of these barriers from those of the QM studies is expected, since the MD simulation usually does not go through minimum energy path and does not include the

Figure 4. The relative potential energy (in $\mathrm{kcal} / \mathrm{mol}$) of the system to TS1 during the first 600 fs of a total 2 ps ADMP simulation, starting from TS1 with 0.2 fs time step and 6.3 $\mathrm{kcal} / \mathrm{mol}$ initial kinetic energy. Simulation times for the selected points are \mathbf{A} at $0 \mathrm{fs}, \mathbf{B}$ at $48 \mathrm{fs}, \mathbf{C}$ at $105 \mathrm{fs}, \mathbf{D}$ at $153 \mathrm{fs}, \mathbf{E}$ at $179 \mathrm{fs}, \mathbf{F}$ at $190 \mathrm{fs}, \mathbf{G}$ at $201 \mathrm{fs}, \mathbf{H}$ at $228 \mathrm{fs}, \mathbf{I}$ at $271 \mathrm{fs}, \mathbf{J}$ at $301 \mathrm{fs}, \mathbf{K}$ at $334 \mathrm{fs}, \mathbf{L}$ at $349 \mathrm{fs}, \mathbf{M}$ at 379 fs , and \mathbf{N} at 421 fs .

ZPVE correction. By overcoming an $11.1 \mathrm{kcal} / \mathrm{mol}$ reaction barrier at TS2 (E), the system reaches int (F) and then comes to a potential energy plateau involving the migration of PH_{3} from N_{α} to N_{γ} and backward migration from N_{γ} to N_{α} as indicated by points $\mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}$, and \mathbf{K} till 380 fs. The most noticeable geometric change during the PH_{3} migration is the rotation of PH_{3}, which is clearly manifested by the relative positions of the three H atoms on P of PH_{3}. This rotation is the driving force for the PH_{3} migration, breaking the PN_{α} bond and forming the PN_{γ} bond. After 380 fs, the system uses 50 fs to dissociate back to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$. The tautomerization from cis to trans and isomerization from cis to int are competitive processes according to this ADMP simulation, and the isomerization from cis to int is favored energetically.

Figure 5. The relative potential energy (in $\mathrm{kcal} / \mathrm{mol}$) of the system to TS3 during the first 1.6 ps of a total 2 ps ADMP simulation, starting from TS3 with 0.2 fs time step and 12.6 $\mathrm{kcal} / \mathrm{mol}$ initial kinetic energy. Simulation times for the selected points are \mathbf{A} at $0 \mathrm{fs}, \mathbf{B}$ at $105 \mathrm{fs}, \mathbf{C}$ at $173 \mathrm{fs}, \mathbf{D}$ at $246 \mathrm{fs}, \mathbf{E}$ at $288 \mathrm{fs}, \mathbf{F}$ at $369 \mathrm{fs}, \mathbf{G}$ at $402 \mathrm{fs}, \mathbf{H}$ at 440 fs , \mathbf{I} at 554 fs , J at $677 \mathrm{fs}, \mathbf{K}$ at $772 \mathrm{fs}, \mathbf{L}$ at $857 \mathrm{fs}, \mathbf{M}$ at $991 \mathrm{fs}, \mathbf{N}$ at 1140 fs , \mathbf{O} at $1384 \mathrm{fs}, \mathbf{P}$ at $1510 \mathrm{fs}, \mathbf{Q}$ at 1532 fs , and \mathbf{R} at 1590 fs.
D. TS3 of $\mathbf{P H}_{\mathbf{3}}+\mathbf{N}_{\mathbf{3}} \mathbf{H}$. Previous QM calculations ${ }^{6-8}$ have all predicted that the PES around TS3 is very flat: the energy of TS3 after the ZPVE correction is even lower than that of int ${ }^{6,7}$ (as shown in Scheme 3). The only conclusion could be drawn here is that the energies of TS3 and int are very close, and essentially there is only one reaction barrier from cis to the final products. ${ }^{6}$ Starting from TS3 with $6.3 \mathrm{kcal} /$ mol initial kinetic energy and 0.2 fs time step in adiabatic ADMP simulations, the system is trapped in the cis potential well after it goes through int and gets over TS2 within 4 ps . More initial kinetic energy might help the system overcome the reaction barrier to dissociate back to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$. A trajectory of ADMP simulation starting from TS3 with time step 0.2 fs and $12.6 \mathrm{kcal} / \mathrm{mol}$ initial kinetic energy is shown in Figure 5. Around 250 fs, the system reaches cis (point D in Figure 5) after going through int (similar to point B) and TS2 (similar to point C). The PES of this region of TS2, int, and TS3 is very flat, consistent with previous QM predictions. ${ }^{6-8}$ At 288 fs , the system tries to tautomerize to TS1 by twisting dihedral angle $\mathrm{D}_{\mathrm{PN} \alpha N \beta \mathrm{~N} \gamma}$ to around 30° (point E in Figure 5) and returns to cis at 369 fs and switches to $\mathrm{PN}_{\alpha} \mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ ring-opening and ring-closing motions. The ringopening and ring-closing motions companied with bond stretching take 700 fs before preparing the system to dissociate back to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$. At about 1.51 ps , the system begins to dissociate to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ by redistributing internal energy and momentum from cisTS (point \mathbf{P}). Once the system goes over cisTS, the potential energy of the system drops quickly along the dissociation path. Starting from TS3 with 0.2 fs time step and $6.3 \mathrm{kcal} / \mathrm{mol}$ initial kinetic energy, the ADMP simulation toward the N_{2} dissociation is straightforward, and the system dissociates to N_{2} and $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$ quickly and smoothly as shown in Figure 6.

During the N_{2} dissociation, the most visible motions within the system are the internal rotation of NH about the PN_{γ} bond and the departure of N_{α} and N_{β} from the system. Within the first 40 fs , the major motions of the system are N_{2} formation and detachment, which is in the forward direction from TS3 ${ }^{6} \mathrm{~N}_{\alpha}$ and N_{β} are not leaving at the same speed:

Figure 6. The relative potential energy (in $\mathrm{kcal} / \mathrm{mol}$) of the system to TS3 during the first 100 fs of a total 400 fs ADMP simulation, starting from TS3 with 0.2 fs time step and 6.3 $\mathrm{kcal} / \mathrm{mol}$ initial kinetic energy. Simulation times for the selected points are \mathbf{A} at $0 \mathrm{fs}, \mathbf{B}$ at $16 \mathrm{fs}, \mathbf{C}$ at $36 \mathrm{fs}, \mathbf{D}$ at 54 fs , and \mathbf{E} at 70 fs . The upper-right structures are the final products, $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$ and N_{2}, drawn for comparison.
N_{β} leaves faster than N_{α} does (as indicated by points \mathbf{B} and C in Figure 6). After $40 \mathrm{fs}, \mathrm{N}_{2}$ dissociates from $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$, and a portion of the residual energy redistributes into the internal rotation of NH about the PN bond in $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$, which is clearly indicated by the relative positions of the hydrogen atoms on P and the hydrogen atom on N (points \mathbf{D} and \mathbf{E} in Figure 6). In TS3, the hydrogen atom on \mathbf{N}_{γ} is in the eclipse position to one of the hydrogen atoms on P and is in the staggered conformation to the remaining atoms on P in $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$. The dissociation energy of the system to $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$ and N_{2} from TS3 is about $55 \mathrm{kcal} / \mathrm{mol}$, which is consistent with our previous QM studies. ${ }^{6}$

The ADMP simulations with 0.2 fs time step and $6.3 \mathrm{kcal} /$ mol initial kinetic energies ($12.6 \mathrm{kcal} / \mathrm{mol}$ for TS3) started from gammaTS, cisTS, TS1, and TS3 reproduce the potential energy surface as predicted in our previous QM studies ${ }^{6}$ and reveal details about the dynamics on the PES. ADMP simulations starting from TS2 end with dissociation back to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$.
E. Thermostatic MD Simulations. In chemical reactions, the adiabatic condition might not be maintained, and most reactions are thermostatic. The thermostatic MD simulations should be more appropriate to uncover the reaction mechanism in an actual chemical environment. The final step of the Staudinger reaction only takes place at room temperature, and a complex forms at lower temperature before the whole reaction completes. ${ }^{35}$ To reproduce the experimental condition, an ADMP simulation with 0.2 fs time step at 298 K is carried out starting from TS3 for 2 ps . Shown in Figure 7, the trajectory of the potential energy is different from the adiabatic trajectory with $12.6 \mathrm{kcal} / \mathrm{mol}$ initial kinetic energy (as shown in Figure 5). However, the qualitative evolutions of the system in the two trajectories are similar, both isomerize to cis first, then undergo $\mathrm{PN}_{\alpha} \mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ ring opening followed by PH_{3} shift, and finally dissociate to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ (shown by structures of the system during the simulations in Figures 5 and 7). The system dissociates back to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ after 600 fs in the thermostatic ADMP simulation, which is much faster than that in the adiabatic ADMP simulation. Under the same condition, an ADMP simulation starting from

Figure 7. The reaction potential energy (in $\mathrm{kcal} / \mathrm{mol}$) of the system to TS3 during the first 700 fs of a total 2 ps thermostatic ADMP simulation, starting from TS3 at 298 K with 0.2 fs time step. Simulation times for the selected points are \mathbf{A} at $0 \mathrm{fs}, \mathbf{B}$ at $11 \mathrm{fs}, \mathbf{C}$ at $32 \mathrm{fs}, \mathbf{D}$ at $43 \mathrm{fs}, \mathbf{E}$ at $72 \mathrm{fs}, \mathbf{F}$ at $88 \mathrm{fs}, \mathbf{G}$ at $138 \mathrm{fs}, \mathbf{H}$ at $207 \mathrm{fs}, \mathbf{I}$ at $267 \mathrm{fs}, \mathbf{J}$ at $323 \mathrm{fs}, \mathbf{K}$ at 341 fs , \mathbf{L} at $385 \mathrm{fs}, \mathbf{M}$ at $427 \mathrm{fs}, \mathbf{N}$ at $467 \mathrm{fs}, \mathbf{O}$ at $506 \mathrm{fs}, \mathbf{P}$ at $530 \mathrm{fs}, \mathbf{Q}$ at 567 fs , and \mathbf{R} at 643 fs.

Figure 8. The relative potential energy (in $\mathrm{kcal} / \mathrm{mol}$) of the system to TS3 during a total 400 fs thermostatic ADMP simulation, starting from TS3 with 0.2 fs time step at 298 K . Simulation times for the selected points are \mathbf{A} at $0 \mathrm{fs}, \mathbf{B}$ at 20 fs, \mathbf{C} at $40 \mathrm{fs}, \mathbf{D}$ at $60 \mathrm{fs}, \mathbf{E}$ at $100 \mathrm{fs}, \mathbf{F}$ at 120 fs , and \mathbf{G} at 150 fs. The pair of left and right numbers are PN_{α} and $\mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ bond distances (in \AA), respectively.

TS3 is carried out for 400 fs , and the system dissociates forward to $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$ and N_{2} (as shown in Figure 8). Similar to the adiabatic dissociation (as shown in Figure 6), the system dissociates forward to $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$ and N_{2}, followed by the internal rotation of NH about the PN bond in $\mathrm{H}_{3} \mathrm{P}=$ NH. In the thermostatic dissociation, N_{α} and N_{β} leave $\mathrm{H}_{3} \mathrm{P}=$ NH at the same speed. The thermostatic dissociation has a similar dissociation energy to that of the adiabatic dissociation (about $56 \mathrm{kcal} / \mathrm{mol}$). From the above ADMP simulations, the complete reaction pathway of the Staudinger reaction is explored, and the ADMP simulations corroborate the previous QM predictions. ${ }^{6-8}$

To get more details on the evolution of the system during the Staudinger reaction, it is necessary to do structural analysis on the trajectory. The thermostatic ADMP simulation starting from TS3 at 298 K is analyzed accordingly. $\mathrm{R}_{\mathrm{PN} \alpha}$ and $\mathrm{R}_{\mathrm{PN} \gamma}$ and the bond distance fluctuations of $\mathrm{R}_{\mathrm{N} \gamma \mathrm{H}}$ and R_{PH} during the simulation are shown in Figure 9. The

Figure 9. Bond distances $\mathrm{R}_{\mathrm{PN} \alpha}$ and $\mathrm{R}_{\mathrm{P} \gamma y}$ and bond distance changes of $\mathrm{R}_{\mathrm{N} \gamma \mathrm{H}}$ and R_{PH} with respect to TS3 during the first 800 fs of a total 2 ps thermostatic ADMP simulation, starting from TS3 at 298 K . The hydrogen atom on P is at the same side of the hydrogen atom on N_{γ} in TS3.
hydrogen atom of R_{PH} on P is at the cis position to the hydrogen atom on N_{γ}, and all the structural data pertinent to hydrogen atom on P are based on this hydrogen atom. During the course of the reaction, bond distance $\mathrm{R}_{\mathrm{PN} \gamma}$ changes much more than $\mathrm{R}_{\mathrm{PN} \alpha}$ before dissociation back to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$. Initially, PH_{3} approaches N_{α} and N_{γ} at the similar distance from far away - ca. 700 fs . From TS3 to cis, bond distance $\mathrm{R}_{\mathrm{N} \gamma \mathrm{H}}$ does not change much, while bond distance $\mathrm{R}_{\text {PH }}$ changes a lot (mainly stretching). It can be inferred that the PH bond stretching facilitates the PH_{3} migration between N_{α} and N_{γ}. Figure 10 shows bond angle $\mathrm{A}_{\mathrm{N} \alpha \mathrm{N} \beta \mathrm{N} \gamma}$ and dihedral angles $\mathrm{D}_{\mathrm{PN} \alpha N \beta \mathrm{~N} \gamma}, \mathrm{D}_{\mathrm{N} \alpha N \beta \mathrm{~N} \gamma \mathrm{H}}$, and $\mathrm{D}_{\mathrm{HPN} \alpha N \beta}$ of the trajectory. The value of $\mathrm{A}_{\mathrm{N} \alpha N \beta N \gamma}$ shows the linearity of the azide backbone during the simulation. When PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ fall apart, $\mathrm{A}_{\mathrm{N} \alpha N \beta \mathrm{~N} \gamma}$ begins to increase: $\mathrm{A}_{\mathrm{N} \alpha N \beta \mathrm{~N} \gamma}$ reaches 175° at 470 fs from 120° at 475 fs. Dihedral angle $\mathrm{D}_{\mathrm{PNaN} \beta \mathrm{N} \gamma}$ indicates the planarity of the $\mathrm{PN}_{\alpha} \mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ four-membered ring and serves as a criterion for the system to tautomize from cis (close to 0°) to trans (close to 180°) through TS1 (close to 90°). At 220 fs , the system tries to twist $\mathrm{D}_{\mathrm{PN} \mathrm{\alpha N} \beta \mathrm{~N} \gamma}$ (point \mathbf{H} in Figure 7) and returns to cis ca. 300 fs, which indicates that the system can tautomerize to trans from cis if provided with enough energy and proper energy and momentum distributions. The change of $\mathrm{D}_{\mathrm{PN} \alpha \mathrm{N} \beta \mathrm{N} \gamma}$ indicates that PH_{3} does migrate from N_{α} to N_{γ} within the $\mathrm{N}_{\alpha} \mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ plane. Dihedral angle $\mathrm{D}_{\mathrm{N} \alpha \mathrm{N} \beta \mathrm{N} \gamma \mathrm{H}}$ serves as an indicator for the involvement of H motion on N_{γ} in the Staudginer reaction: the change of this dihedral angle during the ADMP simulation indicates that the out-of- $\mathrm{N}_{\alpha} \mathrm{N}_{\beta} \mathrm{N}_{\gamma} \mathrm{H}$ plane motion of H takes place all along the Staudinger reaction, especially during the PH_{3} migration from N_{α} to N_{γ} as indicated by point \mathbf{F} (at 88 fs) and point \mathbf{J} (ca. 320 fs) in Figure 7. The rotation of PH_{3} group during the reaction is indicated by dihedral angle $\mathrm{D}_{\mathrm{HPNaN} \beta}$ shown

Figure 10. Bond angles $\mathrm{A}_{\mathrm{NaN} \beta \mathrm{N} y}$ and dihedral angles $\mathrm{D}_{\mathrm{PNaN} \beta \mathrm{N} \gamma}$, $\mathrm{D}_{\mathrm{N} \alpha N \beta N \gamma \mathrm{H}}$, and $\mathrm{D}_{\mathrm{HPN} \alpha N \beta}$ of the system with respect to TS3 during the first 800 fs of a total 2 ps thermostatic ADMP simulation, starting from TS3 at 298 K . The hydrogen atom on P is at the same side of the hydrogen atom on N_{γ} in TS3.
in Figure 10. The overall change of $\mathrm{D}_{\mathrm{HPNaN} \beta}$ is more than 90° during the isomerization from TS3 to cis, which clearly indicates that PH_{3} rotation serves as a driving force for the PH_{3} migration between N_{α} and $\mathrm{N}_{\gamma} . \mathrm{D}_{\mathrm{HPN} \alpha \mathrm{N} \beta}$ changes through the entire reaction pathway. The structural analysis indicates that (1) the PH_{3} leaves (or approaches) N_{α} and N_{γ} with similar speeds when the system dissociates (or forms), (2) P is not always within the $\mathrm{N}_{\alpha} \mathrm{N}_{\beta} \mathrm{N}_{\gamma}$ plane during the Staudinger reaction, and (3) the out-of-plane motion of the hydrogen atom on N_{γ} and the rotation of PH_{3} facilitate the migration of PH_{3} between N_{α} and N_{γ}. Bulky substituent groups hinder the rotation and increase the rotation barrier from cis to TS3. This is indeed the case for large substituent groups, as predicted by our previous QM studies. ${ }^{6}$

ADMP simulation is an approximation to BOMD on the PES and should be parallel to that of BOMD. ${ }^{26,36} \mathrm{We}$ performed single-point calculations with the ADMP trajectory starting from TS3 at the same level of theory as before. ${ }^{6}$ The relative energies of the single-point calculations to TS3 are plotted in Figure 11. The relative energies of the singlepoint calculations are very similar to those of ADMP simulations, which verify the validity of the ADMP simulations. Figure 11 also shows the natural charge of PH_{3} group during the ADMP simulation. The plot of the natural charge of PH_{3} indicates the charge transfer between PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ subunits during the Staudinger reaction. Around the dissociation, the charge transfer between PH_{3} and $\mathrm{N}_{3} \mathrm{H}$ decreases as the two groups fall apart, and the overall charge on each group diminishes around 540 fs when PN_{α} and PN_{γ} bond distances are about $3.0 \AA$. The natural charge on PH_{3} group around the dissociation (or attacking) region along the trajectory indicates the electrostatic attraction plays an important role for the initial Staudinger reaction. During the Staudinger reaction, the average polarizability of the system

Figure 11. Relative potential energy and average polarizabily of the system and natural charge of PH_{3} unit of the system, based on single-point and thermostatic ADMP calculations at B3LYP with $6-31 \mathrm{G}(\mathrm{d})$ basis set, starting from TS3 with 0.2 fs time step at 298 K . The total simulation time is 2 ps . Only the first 800 fs is shown for relative energy of the system and the natural charge of PH_{3}, and only the first 620 fs is shown for the averaged polarizability. The structures of the stationary points on the potential energy surface are displayed in Figure 7.
(as shown in Figure 11) changes along with the reaction course, and the region around TS3 has relatively small polarizability because of its compact structure. The polarizability increases as the system tries to twist $\mathrm{D}_{\mathrm{PN} \alpha N \beta \mathrm{~N} \gamma}$ to reach TS1. cis has small polarizability. As cis begins to dissociate back to PH_{3} and $\mathrm{N}_{3} \mathrm{H}$, the polarizability increases as the system overcomes the cisTS barrier and decreases after overcoming the barrier. The change of polarizability of the system during the reaction course indicates that the solvent effect on the system varies with the reaction course: the polar solvent will stabilize all transition states and thus facilitates the overall reaction by decreasing the reaction barriers.

Some geometric data (bond distances $\mathrm{R}_{\mathrm{PN} \alpha}, \mathrm{R}_{\mathrm{N} \beta \mathrm{N} \gamma}, \mathrm{R}_{\mathrm{PH}}$, and $\mathrm{R}_{\mathrm{N} \gamma \mathrm{H}}$ and dihedral angles $\mathrm{D}_{\mathrm{HPN} \alpha N \beta}, \mathrm{D}_{\mathrm{HPN} \gamma \mathrm{H}}$, and $\left.\mathrm{D}_{\mathrm{N} \alpha \mathrm{N} \beta \mathrm{N} \gamma \mathrm{H}}\right)$ are plotted in Figures 12 and 13 for the dissociation trajectory to $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$ and N_{2} starting from TS3 in the thermostatic ADMP simulation. As shown in Figure 12, the N_{α} and N_{β} leave $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$ at the same speed. Dihedral angle $\mathrm{D}_{\mathrm{HPN} \gamma \mathrm{H}}$ changes 30° at the first 90 fs , indicating that the leaving of N_{α} and N_{β} is the major motion during the N_{2} dissociation. Dihedral angle $\mathrm{D}_{\mathrm{HPN} \gamma \mathrm{H}}$ changes from -15° to -100° after the dissociation of N_{2} during the first 90 fs , which is responsible for the potential energy fluctuation of the system after N_{2} dissociation. Figure 13 displays bond distances R_{PH}, $\mathrm{R}_{\mathrm{N} \gamma \mathrm{H}}$, and $\mathrm{R}_{\mathrm{PN} \gamma}$ along the dissociation. $\mathrm{R}_{\mathrm{PN} \gamma}$ decreases to the equilibrium $\mathrm{P}=\mathrm{N}$ bond distance (around $1.56 \AA$) in $\mathrm{H}_{3} \mathrm{P}=$ NH after $50 \mathrm{fs} . \mathrm{PN}_{\gamma}$ bond stretches with the internal rotation

Figure 12. Bond distances $\mathrm{R}_{\mathrm{P} N \alpha}$ and $\mathrm{R}_{\mathrm{PN} \gamma}$ and dihedral angles $D_{H P N \alpha N \beta}$ and $D_{H P N \gamma H}$ with respect to TS3 during the first 200 fs of a total 400 fs thermostatic ADMP simulation, starting from TS3 at 298 K . The hydrogen atom on P is at the same side of the hydrogen atom on N_{γ} in TS3.

Figure 13. Bond distances $\mathrm{R}_{\mathrm{PH}}, \mathrm{R}_{\mathrm{P} \gamma \gamma}$, and $\mathrm{R}_{\mathrm{N} \gamma \mathrm{H}}$ and dihedral angle $\mathrm{D}_{\mathrm{NaN} \mathrm{\beta N} \mathrm{\gamma H}}$ of the system with respect to TS3 during the first 200 fs of a total 400 fs thermostatic ADMP simulation, starting from TS3 at 298 K . The hydrogen atom on P is at the same side of the hydrogen atom on N_{γ} in TS3.
of $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$. From the changes of $\mathrm{D}_{\mathrm{HPN} \alpha \mathrm{N} \beta}, \mathrm{D}_{\mathrm{HPN} \gamma \mathrm{H}}$, and $\mathrm{D}_{\mathrm{N} \alpha \mathrm{N} \beta \mathrm{N} \gamma \mathrm{H}}$, one can infer that it is $\mathrm{N}_{\gamma} \mathrm{H}$ that rotates about the PN bond in $\mathrm{H}_{3} \mathrm{P}=\mathrm{NH}$ after the N_{2} dissociation.

IV. Conclusions

In the present work, the Staudinger reaction of $\mathrm{PH}_{3}+\mathrm{N}_{3} \mathrm{H}$ has been simulated by ADMP molecular dynamics within DFT. The ADMP simulations starting from cisTS, gammaTS, cis, TS1, TS2, and TS3 reproduce the reaction pathways predicted by previous QM methods. ${ }^{6-8}$ The details of the Staudinger reaction have been uncovered through the trajectories of the ADMP simulations:
(1) For the initial attack of PH_{3} to $\mathrm{N}_{3} \mathrm{H}$, the P atom approaches N_{α} and N_{γ} with similar distances before significant interaction occurs between the two reactants. When PH_{3} approaches $\mathrm{N}_{3} \mathrm{H}$ ca. $3.0 \AA$, charge transfer from PH_{3} to $\mathrm{N}_{3} \mathrm{H}$ occurs, and the average polarizability of the system increases. This manifests that the strong electrostatic interaction occurs at this beginning stage and is the main driving force for the initial attack. The P atom interacts with both N_{α} and N_{β} when PH_{3} approaches $\mathrm{N}_{3} \mathrm{H}$, as manifested by the molecular orbitals of the system during the initial reaction. The empty d orbitals of P play very limited role in this reaction.
(2) The Staudinger reaction goes through cis, TS2, int, and TS3 to form phosphazene as predicted quantum mechanically before. ${ }^{6-8}$ According to the ADMP simulations, cis can tautomerize to trans through TS1 with proper conditions. The rotation of PH_{3} and the stretching of PH bonds serve as dominant driving forces for the second phase of the Staudinger reaction from cis to TS3, according to the dihedral angle $D_{H P N \alpha N \beta}$ and the bond distance $R_{P H}$ changes during the Staudinger reaction. Small substituent groups on P of phosphane, with faster PR_{3} rotation and stronger PR stretching, will certainly facilitate the last stage (from cis to TS3) of the Staudinger reaction.
(3) The fact that the polarizability changes during the course of the reaction implies that different solvent effects are expected at different stages of the reaction. Appropriate solvent can alter the reaction course (e.g. tautormerization to trans from cis). Although the solvent effects are not taken into account in the present work explicitly, this omission should not qualitatively change the conclusion drawn here: polar solvent can facilitate the overall reaction by stabilizing all transition states and hence decreasing the reaction barriers. This understanding is based on the close correlation between the changes of the average polarizability and the potential energy of the system during the reaction. In our previous static quantum mechanical studies, ${ }^{6}$ we compared the Staudinger reactions with different substituent groups on phosphane and azide in gas phase and in dimethyl sulfoxide and reached the same conclusion about the solvent effects for this reaction.

In summary, the Saudinger reaction of $\mathrm{PH}_{3}+\mathrm{N}_{3} \mathrm{H}$ has been studied with ab initio molecular dynamics. Our work demonstrates that the combination of quantum mechanical studies with ab initio molecular dynamics will enhance the strengths of both approaches and yield detailed mechanical and dynamical understanding of chemical reactions.

Acknowledgment. The financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. We thank Professor Srinivasan S. Iyengar for a reprint of ref 26. W.Q.T. is grateful to Professor Yuriko Aoki at Kyushu University for her hospitality.

Supporting Information Available: Relevant molecular orbital diagrams of points $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} in Figure 2 during an ADMP simulation starting from cisTS (Figure 2s). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
(2) (a) Cordridge, D. E. C. Phosphorus 2000: Chemistry, Biochemistry \& Technology; Elsevier: Amsterdam, 2000. (b) Irving, J. T. Calcium and phosphorus metabolism; Academic Press: New York, 1973.
(3) (a) Gololobov, Yu. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37, 437. (b) Gololobov, Yu. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.
(4) Kato, H.; Ohmori K.; Suzuki, K. Synlett 2001, SI, 1003.
(5) (a) Saxon, E.; Luchansky, S. J.; Hang, H. C.; Yu, C.; Lee, S. C.; Bertozzi, C. R. J. Am. Chem. Soc. 2002, 124, 14893. (b) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007. (c) Kato, H.; Ohmori K.; Suzuki, K. Synlett 2001, SI, 1003.
(6) Tian, W. Q.; Wang, Y. A. J. Org. Chem. 2004, 69, 4299.
(7) Widauer, C.; Grützmacher, H.; Shevchenko I.; Gramlich, V. Eur. J. Inorg. Chem. 1999, 1659.
(8) Alajarin, M.; Conesa, C.; Rzepa, H. S. J. Chem. Soc., Perkin Trans. 1999, 2, 1811.
(9) Goerlich, R.; Farkens, M.; Fischer, A.; Jones, P. G.; Schmutzler, R. Z. Anorg. Allg. Chem. 1994, 620, 707.
(10) Molina, P.; López-Leonardo, C.; Llamas-Botía, J.; FocesFoces, C.; Fernández-Castaño, C. Tetrahedron 1996, 52, 9629.
(11) Alajarín, M.; Molina, P.; López-Leonardo, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 67.
(12) Allen, L. C. Int. J. Quantum Chem. 1994, 49, 253.
(13) (a) Fukui, K. Acc. Chem. Res. 1981, 14, 363. (b) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. (c) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
(14) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M., Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179.
(15) Mackerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, T. F. K.; Mattos, C.; Michnick, S.; Nago, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórk-ievicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586.
(16) Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A. III; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10046.
(17) Modern methods for multidimensional dynamics computation in chemistry; Thompson, D. L., Ed.; World Scientific: Singapore, 1998.
(18) Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471.
(19) Marx, D.; Hutter, J. In Modern methods and algorithms of quantum chemistry; Grotendorst, J., Ed.; John von Neumann Institute for Computing: Jülich, 2000; Vol. 1, p 301.
(20) Hartke, B.; Carter, E. A. J. Chem. Phys. 1992, 97, 6569.
(21) Lippert, G.; Hutter, J.; Parrinello, M. Theor. Chem. Acc. 1999, 103, 124.
(22) Lippert, G.; Hutter, J.; Parrinello, M. Mol. Phys. 1997, 92, 477.
(23) Schlegel, H. B.; Millam, J. M.; Iyengar, S. S.; Voth, G. A.; Daniels, A. D.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2001, 114, 9758.
(24) Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2001, 115, 10291.
(25) Schlegel, H. B.; Iyengar, S. S.; Li, X.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2002, 117, 8694.
(26) Iyengar, S. S.; Schlegel, H. B.; Voth, G. A.; Millam, J. M.; Scuseria, G. E.; Frisch, M. J. Isr. J. Chem. 2002, 42, 191.
(27) Gibson, D. A.; Ionova, I. V.; Carter, E. A. Chem. Phys. Lett. 1995, 240, 261.
(28) (a) Tuckerman, M. E. J. Phys.: Condens. Matter 2002, 12, R1297. (b) Nosé, S. J. Chem. Phys. 1984, 81, 511. (c) Hoover, W. G. Phys. Rev. A 1985, 31, 1695. (d) Martyna, G. J.; Klein, M. L.; Tuckerman, M. E. J. Chem. Phys. 1992, 97, 2635. (e) Tuckerman, M. E.; Parrinello, M. J. Chem. Phys. 1994, 101, 1302.
(29) Rega, N.; Iyengar, S. S.; Voth, G. A.; Schlegel, H. B.; Vreven, T.; Frisch, M. J. J. Phys. Chem. B 2004, 108, 4210.
(30) Gaussian 03, Revision B.05, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Cossi; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 2003.
(31) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(32) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
(33) (a) Sheng, Y.; Musaev, D. G.; Reddy, K. S.; McDonald, F. E.; Morokuma, K. J. Am. Chem. Soc. 2002, 124, 4149. (b) Vereecken, L.; Peeters, J.; Bettinger, H. F.; Kaiser, R. I.; Schleyer, P. v. R.; Schaefer, H. F., III J. Am. Chem. Soc. 2002, 124, 2781. (c) Jiao, H.; Frapper, G.; Halet, J.-F.; Saillard, J.-Y. J. Phys. Chem. A 2001, 105, 5945. (d) Beno, B. R.; Wilsey, S.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 4816. (e) Batra, R.; Giese, B.; Spichty, M.; Gescheidt, G.; Houk, K. N. J. Phys. Chem. 1996, 100, 18371. (f) Jursic, B.; Zdravkovski, Z. J. Chem. Soc., Perkin Trans. 2 1995, 1223.
(34) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
(35) Leffler, J. E.; Temple, R. D. J. Am. Chem. Soc. 1967, 89, 5235.
(36) The single-point calculations based on the ADMP trajectory are certainly different from the BOMD simulations, since the BOMD calculates the force from the converged charge density and potential.
CT049918X

[^0]: * Corresponding author e-mail: yawang @chem.ubc.ca.
 ${ }^{\dagger}$ Current address: Department of Molecular and Material Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 8168580, Japan.

