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Kohn-Sham method as a free-energy minimization at infinite temperature
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Given an electronic system in its ground state, hawhglectrons moving in the field of nuclei generating
a potentialvy and accurate electron densjy, it is demonstrated that the exact Kohn-Sham equations result
from a minimization with respect t@, at some very high temperatu® of a free energy functional
ATp,pol=Tdp]+(plvo)+I[p)(1—1IN)— 6S[p,po], WhereS[p,po]=—(p In(p/py)). The infiniteH mini-
mum of A? is, within an error so far found to be less than the correlation energy, equal to the total electronic
energy of the systeniS1050-294®7)03404-5

PACS numbes): 31.15.Ew, 31.25.Eb

The object of concern is the ground state of some elec- E[p(r)]=Tdp(N)1+{p(N|ve)+I[p(r)]+Exd p(r)].
tronic system with a fixed number of electrohsin the (7)
Born-Oppenheimer approximation, with the electrons mov-
ing in an external potential due to the atomic nuclgj(r). At the solution pointp(r)=pq(r), and
The Kohn-Sham(KS) equations for determining the KS or-

bitals{¢;}, the KS orbital energieg;}, and theexactground- N

state electron densityy(r) are[1,2] E[Po(r)]zg1 ei—J[po(r)]+{Exd po(r)]
[—3V2+uR(N)]di=¢i¢ (1) —(po(D[vxd po(N])}- ®
with A convenient and physical resolution Bf is [3]
N Exc[P]:ch[p]_(llN)J[p]- 9
2 #il?=p(1) )
=1 Then, Eqs(3), (7), and(8) become
and oSTp1= 00N +u (N(A-1N) +ugpl, (10
oD =8 p(N]1=00(N +0y(N+04as(1), () Elp]=Td p]+(plog)+ I pl(1—1N)+God p]. (1D
where and
_ [ e N
o0=0lp01= | 0o W Elpol=3 e pol(1- 1N +HGud ol ~(plug),
and (12
SEdp(r)] where
xc\I') = Uxdl =T s N - 5
D=5, ® L 8Gdp(n)] 13
vg(r)=vglp(r)]= (1) (13

Here E,[p(r)] is the nonclassical part of the electron-
electron repulsion-energy functionalV Jp(r)] plus
{Tlp(r)]=T4p(r)]}, whereT[p] is the kinetic-energy func-
tional for the interacting system with densjiyr) and T[] p]

is the kinetic-energy functional for the corresponding nonin
teracting (no electron-electron repulsiprsystem with the
same density,

Separating out of the Fermi-AmaldiN term causes 4(r) to
have a much shorter range thag(r) [3]. Gydp] andv[p]
are universal functionals qf. Mastery ofG,p] is the fun-
“damental problem of density-functional theory.
Given an accuratg, for a givenv, (determined by con-
ventional quantum-chemical methods or otherliség] po
N and hence y[po] can be determined by a brute-force inver-
_ N 1v2 4 sion of Egs.(1) and (2) with p set equal top,. This was
Tslp()] .21 (il =2V7 ). © demonstrated some years agh. It is not easy to do, but
special tricks can helf5]. Typical of recent works exploit-
The potentiab X is unique(up to an arbitrary constanand  ing such methods are the paper of Gritsenko, van Leeuwen,
multiplicative. The self-consistent solution of Eq4)—(5) and Baerendg5]. As data on more and more accuraffp]
achieves the minimization of the energy functional are accumulated, methods from the theory of neural net-
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TABLE I. Kohn-Sham quantitiegin a.u) for three atoms. The Zhao-Parr method is described in [R6f,
and the “exact” values of the Kohn-Sham quantities from the Zhao-Parr method are taken frorff8RRafel
[10-12. For He, Be, and Ne, the temperatu#te@alues employed were 700, 9000, and 16 000, respectively.

Kohn-Sham He Be Ne

quantity Zhao-Parr This work Zhao-Parr This work Zhao-Parr This work
T4l p] 2.867 2.867 14.593 14.591 128.625 128.578
€15 —0.9039 —0.9038 —4.2142 —4.2152 —30.812 —30.800
€22 —0.3384 —0.3374 —1.654 -1.651
£2p -0.797 -0.795
J[p] 2.050 2.050 7.220 7.219 66.086 66.059
Vel p] —6.753 —6.753 —33.708 —33.705 —-311.15 —311.08
(plvg) 0.029 0.029 —-0.819 -0.819 -6.173 —6.068
{plvye -2.021 -2.021 —4.429 —4.428 —19.39 —19.28
E[p]? —2.833 —2.832 —14.518 —-14.519 —129.213 —129.122

&The Parr-Ghosh formula has been useddpp], as described in the text: EqR0) and(26). AccurateE|[ p]
values[15] for the three atoms are 2.904,—14.667, and—128.938, respectively.

works may even be used to instruct the computer to generate vglpol= lim vg(r)= lim )\vﬁ(r)
better and better approximate representations of the exact p—s Ao

A particularly efficient way to accomplish the inversion — lim )\J p(r)—po(r’) dr' (18)
po—vg has recently been developed, based on the Percus- N [r—r’| ’

Levy constrained search procedure for determiniipog]

[8,9]. That is, where p* is the solution of the approximate KS equations

havingv, replaced by g A few numerical result§11] are
presented in Table I. The total electronic energy cannot be
computed from this scheme only, since a knowledge pf
whereD is a Slater determinant & orthonormal orbitals. ~@lone does not imply a full knowledge . On the other

At the solution point, the orbitals are the KS orbitals. Thehand, with the assumptidi3]

equations for determining the orbitals must be just @y.as

can be seen by performing the minimization of Eg4), Gyd pol=(polvg), (19
imposing the local constraint

Td pol= min(D|T|D), (14)

D—pg

Eqg. (12 becomes the Parr-Ghosh formula for the total en-

p(r)—po(r)=0, (15 ergy[3],
with a point-dependent Lagrange multipliefZ(r). This im- N
plies the just-described brute-force inversion method. How- Elp]= o 1—1/N 2
ever, one can be more explicit, by enforcing Ef5) with [p] 21 &i—Jpl( N). 20
the equivalent global constraifitO]
, , The error in this formula has been shown to be less than the
Clp Po]Elf f Lp(r) = po(r)1Lp(r") — po(r’)] dr ds’ correlation energy3]. A more elaborate approximation cuts
’ : Ir—r’| this error by about one-haffL2].
-0 (16) Now begin again, with an alternative to E¢L6), an

entropy-deficiency constraint from information the¢ta],
Adopting the partition exhibited in Eq$10) and (11), re-

quiring the orthonormality of the orbitals, and attaching a _ p(r) B _
Lagrange multiplier to Eq(16), give, for the nonclassical SLp,pol=—{ p(r)in po(r) {(p)={po)}=0. (2D
part of the effective potential,
, The maximum value o8| p,p.] is zero, which occurs if and
M) =\ 9CLp,pol N (r):}\f p(r)—po(r’) dr'. only if p=p,. So, attaching a Lagrange multiplierd to this
9 Sp(r) ¢ [r—r’| constraint, there now results
17

Solving the resultant KS-like equations for a fixedwith a vir=-06 M: —6u(r)=6In & (22)
sufficiently large value of\, constitutes the Zhao-Parr ¢ op(r) po(r)

method[10]. This is straightforward to apply, and gives very
good results for all KS quantitig$,10,11. For an exacp,,  Again the multiplier must be infinity at the solution point,
one has, accurately,10], and one has
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p’(r)
po(r)’
(23

lim{—6vl(r)}=1im 6 In

fH— 0

vglpol= limug(r)=
f— 0

f— o

where p? is the solution of the KS-like equation, Wit;hg
replacingvy . There is a difficulty in the implementation of
this procedure: The computeog begins to exhibit wild os-
cillatory behavior whem is very large an@ 4 has decayed to
almost zerd14]. What one does is simply setg equal to

|
zero beyond such a point. A peculiar characteristic of the 9o

present scheme is that, while the comput(-gds truly excel-
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followed by requiring 6 to go to infinity. Moreover, with
Egs.(21) and(22) and the same normalization for bgitand
Po, One has

Sp.pol={plvs), (25

from which follows

N
imAH[p,po]EA[po]=i§1si—J[p]<1—1/N>. (26)

lent, the cutoff in it produces in most cases a negative value This is indeed close to the total energy itself, as has been

of the quantity(p|vy), in apparent contradiction with the
necessarily non-negative value of the totabS[ p,po].

previously demonstratd@®]. The uncertainty associated with
Eqg. (19 is replaced with the uncertainty as to how close

Results are given in Table I. They are seen to duplicate\[ p] andE[p] are to each other. Insofar as the minimization

those obtained by the previous method.
In practical calculations for very large or \ values, Eq.
(23), from the entropy-deficiency constraint of HG1), ap-

of Eq. (24) as described gives the exact KS procedure and
hence all KS quantities exactly, one concludes thét for-
mulation of the KS procedure is a free-energy minimization

pears to be more convenient in early stages of iterationat constant temperature, in the limit of infinite temperature

while Eqg. (18), from the constraint of Eq.16), is more con-

This entire discussion has presumed that the exact

venient near the solution point. More appealingly, the emground-state density of the systepg, is known. The exten-

ployment of Eq.(23) instead of Eq.(18) produces a con-
verged densityp much closer to the exact input densgy.

Further, the new scheme seems to be particularly satisfying
from a physical viewpoint. It amounts to the minimizing |

with respect top, at constan®, of a defined Helmholtz-like
free-energy functional

Ap,po]=Tdp]+(plvo)+I[pI(1—1IN)— 0S[p'p°]('24)

sion of the analysis to produce a variational procedure for
determiningp, is a prime objective for further work.
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