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Kohn-Sham method as a free-energy minimization at infinite temperature

Robert G. Parr and Y. Alexander Wang
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599

~Received 9 August 1996!

Given an electronic system in its ground state, havingN electrons moving in the field of nuclei generating
a potentialv0 and accurate electron densityr0 , it is demonstrated that the exact Kohn-Sham equations result
from a minimization with respect tor, at some very high temperatureu, of a free energy functional
Au@r,r0#5Ts@r#1^ruv0&1J@r#(121/N)2uS@r,r0#, whereS@r,r0#52^r ln(r/r0)&. The infinite-u mini-
mum ofAu is, within an error so far found to be less than the correlation energy, equal to the total electronic
energy of the system.@S1050-2947~97!03404-5#

PACS number~s!: 31.15.Ew, 31.25.Eb
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The object of concern is the ground state of some e
tronic system with a fixed number of electronsN in the
Born-Oppenheimer approximation, with the electrons m
ing in an external potential due to the atomic nuclei,v0~r !.
The Kohn-Sham~KS! equations for determining the KS o
bitals$fi%, the KS orbital energies$«i%, and theexactground-
state electron densityr0~r ! are @1,2#
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2¹21veff

KS~r !#f i5« if i ~1!
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uf i u25r~r ! ~2!

and

veff
KS~r !5veff

KS@r~r !#5v0~r !1vJ~r !1vxcrs~r !, ~3!

where

vJ~r !5vJ@r~r !#5E r~r 8!

ur2r 8u
dt8 ~4!

and

vxc~r !5vxc@r~r !#5
dExc@r~r !#

dr~r !
. ~5!

Here Exc[r(r !# is the nonclassical part of the electro
electron repulsion-energy functionalVee@r~r !# plus
$T@r~r !#2Ts@r~r !#%, whereT[r] is the kinetic-energy func-
tional for the interacting system with densityr~r ! andTs[r]
is the kinetic-energy functional for the corresponding non
teracting ~no electron-electron repulsion! system with the
same density,

Ts@r~r !#5(
i51

N

^f i u2
1
2¹2uf i&. ~6!

The potentialv eff
KS is unique~up to an arbitrary constant! and

multiplicative. The self-consistent solution of Eqs.~1!–~5!
achieves the minimization of the energy functional
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E@r~r !#5Ts@r~r !#1^r~r !uv0&1J@r~r !#1Exc@r~r !#.
~7!

At the solution point,r~r ![r0~r !, and

E@r0~r !#5(
i51

N

« i2J@r0~r !#1$Exc@r0~r !#

2^r0~r !uvxc@r0~r !#&%. ~8!

A convenient and physical resolution ofExc is @3#

Exc@r#5Gxc@r#2~1/N!J@r#. ~9!

Then, Eqs.~3!, ~7!, and~8! become

veff
KS@r#5v0~r !1vJ~r !~121/N!1vg@r#, ~10!

E@r#5Ts@r#1^ruv0&1J@r#~121/N!1Gxc@r#, ~11!

and

E@r0#5(
i51

N

« i2J@r0#~121/N!1$Gxc@r0#2^r0uvg&%,

~12!

where

vg~r !5vg@r~r !#5
dGxc@r~r !#

dr~r !
. ~13!

Separating out of the Fermi-AmaldiJ/N term causesvg~r ! to
have a much shorter range thanvxc~r ! @3#. Gxc@r# andvg[r]
are universal functionals ofr. Mastery ofGxc@r# is the fun-
damental problem of density-functional theory.

Given an accurater0 for a givenv0 ~determined by con-
ventional quantum-chemical methods or otherwise!, v eff

KS@r0#
and hencevg[r0] can be determined by a brute-force inve
sion of Eqs.~1! and ~2! with r set equal tor0. This was
demonstrated some years ago@4#. It is not easy to do, but
special tricks can help@5#. Typical of recent works exploit-
ing such methods are the paper of Gritsenko, van Leeuw
and Baerends@6#. As data on more and more accuratevg[r0]
are accumulated, methods from the theory of neural n
3226 © 1997 The American Physical Society
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TABLE I. Kohn-Sham quantities~in a.u.! for three atoms. The Zhao-Parr method is described in Ref.@10#,
and the ‘‘exact’’ values of the Kohn-Sham quantities from the Zhao-Parr method are taken from Refs.@3# and
@10–12#. For He, Be, and Ne, the temperatureu values employed were 700, 9000, and 16 000, respectiv

Kohn-Sham He Be Ne
quantity Zhao-Parr This work Zhao-Parr This work Zhao-Parr This wor

Ts[r] 2.867 2.867 14.593 14.591 128.625 128.578
«1s 20.9039 20.9038 24.2142 24.2152 230.812 230.800
«2a 20.3384 20.3374 21.654 21.651
«2p 20.797 20.795
J[r] 2.050 2.050 7.220 7.219 66.086 66.059
Vne[r] 26.753 26.753 233.708 233.705 2311.15 2311.08
^ruvg& 0.029 0.029 20.819 20.819 26.173 26.068
^ruvxc& 22.021 22.021 24.429 24.428 219.39 219.28
E[r] a 22.833 22.832 214.518 214.519 2129.213 2129.122

aThe Parr-Ghosh formula has been used forE[r], as described in the text: Eqs.~20! and~26!. AccurateE[r]
values@15# for the three atoms are22.904,214.667, and2128.938, respectively.
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works may even be used to instruct the computer to gene
better and better approximate representations of the e
vg[r] @7#.

A particularly efficient way to accomplish the inversio
r0→vg has recently been developed, based on the Per
Levy constrained search procedure for determiningTs[r0]
@8,9#. That is,

Ts@r0#5 min
D→r0

^DuT̂uD&, ~14!

whereD is a Slater determinant ofN orthonormal orbitals.
At the solution point, the orbitals are the KS orbitals. T
equations for determining the orbitals must be just Eq.~1!, as
can be seen by performing the minimization of Eq.~14!,
imposing the local constraint

r~r !2r0~r ![0, ~15!

with a point-dependent Lagrange multiplierv eff
KS~r !. This im-

plies the just-described brute-force inversion method. Ho
ever, one can be more explicit, by enforcing Eq.~15! with
the equivalent global constraint@10#

C@r,r0#[
1
2 E E @r~r !2r0~r !#@r~r 8!2r0~r 8!#

ur2r 8u
dt dt8

50. ~16!

Adopting the partition exhibited in Eqs.~10! and ~11!, re-
quiring the orthonormality of the orbitals, and attaching
Lagrange multiplier to Eq.~16!, give, for the nonclassica
part of the effective potential,

vg
l~r !5l

dC@r,r0#

dr~r !
5lvc~r !5lE r~r !2r0~r 8!

ur2r 8u
dt8.

~17!

Solving the resultant KS-like equations for a fixedl, with a
sufficiently large value ofl, constitutes the Zhao-Par
method@10#. This is straightforward to apply, and gives ve
good results for all KS quantities@3,10,11#. For an exactr0,
one has, accurately@7,10#,
te
ct
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vg@r0#5 lim
l→`

vg
l~r !5 lim

l→`

lvc
l~r !

5 lim
l→`

lE rl~r !2r0~r 8!

ur2r 8u
dt8, ~18!

where rl is the solution of the approximate KS equatio
havingvg replaced byv g

l. A few numerical results@11# are
presented in Table I. The total electronic energy cannot
computed from this scheme only, since a knowledge ofvg
alone does not imply a full knowledge ofGxc . On the other
hand, with the assumption@3#

Gxc@r0#5^r0uvg&, ~19!

Eq. ~12! becomes the Parr-Ghosh formula for the total e
ergy @3#,

E@r#5(
i51

N

« i2J@r#~121/N!. ~20!

The error in this formula has been shown to be less than
correlation energy@3#. A more elaborate approximation cu
this error by about one-half@12#.

Now begin again, with an alternative to Eq.~16!, an
entropy-deficiency constraint from information theory@13#,

S@r,r0#[2 K r~r !ln
r~r !

r0~r !
L 1$^r&2^r0&%50. ~21!

The maximum value ofS[r,r0] is zero, which occurs if and
only if r[r0. So, attaching a Lagrange multiplier2u to this
constraint, there now results

vg
u~r !52u

dS@r,r0#

dr~r !
52uvs~r !5u ln

r~r !

r0~r !
. ~22!

Again the multiplier must be infinity at the solution poin
and one has
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vg@r0#5 lim
u→`

vg
u~r !5 lim

u→`
$2uvs

u~r !%5 lim
u→`

u ln
ru~r !

r0~r !
,

~23!

where ru is the solution of the KS-like equation, withv g
u

replacingvg . There is a difficulty in the implementation o
this procedure: The computedv g

u begins to exhibit wild os-
cillatory behavior whenr is very large andvg has decayed to
almost zero@14#. What one does is simply setv g

u equal to
zero beyond such a point. A peculiar characteristic of
present scheme is that, while the computedv g

u is truly excel-
lent, the cutoff in it produces in most cases a negative va
of the quantity^ruvg&, in apparent contradiction with th
necessarily non-negative value of the total2uS[r,r0].

Results are given in Table I. They are seen to duplic
those obtained by the previous method.

In practical calculations for very largeu or l values, Eq.
~23!, from the entropy-deficiency constraint of Eq.~21!, ap-
pears to be more convenient in early stages of iterat
while Eq. ~18!, from the constraint of Eq.~16!, is more con-
venient near the solution point. More appealingly, the e
ployment of Eq.~23! instead of Eq.~18! produces a con-
verged densityr much closer to the exact input densityr0.
Further, the new scheme seems to be particularly satisf
from a physical viewpoint. It amounts to the minimizin
with respect tor, at constantu, of a defined Helmholtz-like
free-energy functional

Au@r,r0#5Ts@r#1^ruv0&1J@r#~121/N!2uS@r,r0#,
~24!
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followed by requiringu to go to infinity. Moreover, with
Eqs.~21! and~22! and the same normalization for bothr and
r0, one has

S@r,r0#5^ruvs&, ~25!

from which follows

lim
u→`

Au@r,r0#[A@r0#5(
i51

N

« i2J@r#~121/N!. ~26!

This is indeed close to the total energy itself, as has b
previously demonstrated@3#. The uncertainty associated wit
Eq. ~19! is replaced with the uncertainty as to how clo
A[r] andE[r] are to each other. Insofar as the minimizatio
of Eq. ~24! as described gives the exact KS procedure a
hence all KS quantities exactly, one concludes thatthis for-
mulation of the KS procedure is a free-energy minimizat
at constant temperature, in the limit of infinite temperatur.

This entire discussion has presumed that the ex
ground-state density of the system,r0, is known. The exten-
sion of the analysis to produce a variational procedure
determiningr0 is a prime objective for further work.
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