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Natural variables for density functionals
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Various energy functionals in density-functional theory must possess the form of^b31m f (z,
h,j1 ,j2 ,...,jn)&, if one assumes that they can be expressed as^g(l,r ,r(r ),r (1),r (2),...,r (n))&. Herer(r ) and
r (m) are the electron density and itsmth-order gradient;f andg are proper analytic functions of their variables;
m is 2 when the functionals areTs@r#, Tc

l@r#, andTl@r# ~otherwise it equals 1!; l is the electron-electron
interaction coupling constant in the adiabatic connection formulation; and$b,z,h,j1 ,j2 ,...,jn% is a set of
independent variables~called natural variables! in place of $l,r ,r,r (1),r (2),...,r (n)%. These variables are
defined as$b(r )5r1/3(r ), z5b/l, h5rb, jm5r (m)/b31mum51,2,...,n%. Generalizations to more complex
functional forms are also discussed. Some exact relationships are derived that should be useful for developing
density functionals of the weighted-density approximation type.@S1050-2947~97!01806-4#

PACS number~s!: 31.15.Ew
n

o
ic
th

rg

-

f

-
r

b
-
d

for

f

The immense success of the modern density-functio
theory ~DFT! @1,2# originated from two papers@3,4# by Ho-
henberg, Kohn, and Sham more than three decades ag
which the electron densityr~r ! was legitimatized as the bas
variable of ground-state quantum chemistry. However,
existence of the Hohenberg-Kohn~HK! theorems@3# does
not help much in the construction of the exact total-ene
functional ~hence its components! from r~r !. From the later
1970s on, the adiabatic connection formulation@5–7# and
later the constrained-search formulation@8,9# have nourished
much of the advancement in DFT.

Via the constrained-search formulation@8,9#, the HK uni-
versal functional@3# Fl@r#, defined within an extended do
main

Fl@r#5^CluT̂1lV̂eeuCl&, ~1!

always has a minimum @10# for an antisymmetric
N-electron wave functionCl, with a specific electron-
electron interaction coupling constantl ~which must be set
equal to 1 for realistic full Coulomb systems!. HereCl gen-
erates anN- andv-representabler(r ) and is an eigenstate o
the coupled Hamiltonian@11#

Ĥl5T̂1lV̂ee1V̂ext
l , ~2!

whereT̂, V̂ee, andV̂ext
l are the kinetic energy, the electron

electron repulsion, and the external potential operators,
spectively. In the spirit of the Kohn-Sham theory@4#,
Fl@r# is partitioned into three main pieces

Fl@r#5Ts@r#1lJ@r#1lExc
l @r#, ~3!

where Ts@r# is the noninteracting (l50) kinetic-energy
functional, J@r# is the classical electron-electron Coulom
repulsion functional, andExc

l @r# is the exact exchange
correlation functional.Exc

l @r# in turn can be decompose
into two components@12#

Exc
l @r#5Ex@r#1Ec

l@r#, ~4!

namely, thel-independent exchange functionalEx@r#,

Ex@r#5^Cl50uV̂eeuCl50&2J@r#5Vee
0 @r#2J@r#, ~5!
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and thel-dependent correlation functionalEc
l@r#,

Ec
l@r#5~1/l!Tc

l@r#1Vc
l@r#, ~6!

where

Tc
l@r#5^CluT̂uCl&2^Cl50uT̂uCl50&5Tl@r#2Ts@r#,

~7!

and

Vc
l@r#5^CluV̂eeuCl&2^Cl50uV̂eeuCl50&

5Vee
l @r#2Vee

0 @r#. ~8!

The following exact relations have been established
the J@p#, Ex@r#, Ec

l@r#, Exc
l @r#, Ts@r#, Tc

l@r#, Tl@r#,
Vee
0 @r#, Vc

l@r#, andVee
l @r# functionals@12–15#:

mG@r ;l#5l dG@r ;l#/dl 1ŜcG@r ;l#, ~9!

Tc
l@r#5dEc

l@r#/d~1/l! 5 dExc
l @r#/d~1/l! , ~10!

and

dVee
l @r#

dl
5
dVc

l@r#

dl
52

1

l

dTc
l@r#

dl
52

1

l

dTl@r#

dl
. ~11!

Here

Ŝc52E dt r~r !~r•“ !@d/dr~r !# ~12!

is the functional coordinate-scaling operator@15# and
G@r ;l# is a dummy density functional in place of any o
those just mentioned above. In Eq.~9!, m is 2 for Ts@r#,
Tc

l@r#, andTl@r# ~otherwise, it equals 1!, and the first term
of the right-hand side~RHS! involving l will vanish auto-
matically if G@r ;l# is l independent, i.e.,

G@r ;l#5G@r#. ~13!

For later use, one defines themth-order gradient ofr~r ! as

r~m![¹mr~r ![(
k

rk
~m! ~14!
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and a compact notation for an arbitrary analytic functi
g(r (m)),

r~m!~]g/]r~m!![(
k

rk
~m!~]g/]rk

~m!! , ~15!

whererk
(m) denotes one component ofr (m),

rk
~m![

]mr~r !

~]xk!
m [

]mr~r !

]xk1]xk2•••]xkm
. ~16!

Here$xk1 ,xk2 ,...,xkm% is a specific~thekth! combination of
the three coordinate indices$x,y,z% and the unit vectors
along axis directions are stripped from Eq.~14! for simplic-
ity. More generally, for an entity

u[(
k

uk ~17!

and its arbitrary analytic functiong(u), there is a compac
notation

u~]g/]u![(
k

uk~]g/]uk! . ~18!

Unless otherwise noticed hereafter, the Einstein summa
convention will be applied over repeated indices.

Lemma.Assume a general density functional of the for

G@r ;l#5^g~l,r ,r,r~1!,r~2!,...,r~n!!&, ~19!

whereg is an analytic function of its variables, andr and its
gradients are strongly vanishing asymptotically. Then
following identities hold:

3G@r ;l#1 K ~r•“ !rUdGdr L 5mK r~m!U ]g

]r~m!L 2 K rU]g]r L ,
~20!

3G@r ;l#1ŜcG@r ;l#53K rU]g]r L 1~31m!K r~m!U ]g

]r~m!L
2 K rU]g]r L , ~21!

and

~31m!G@r ;l#23K rU]g]r L 5~31m!K r~m!U ]g

]r~m!L
2 K rU]g]r L 1l

dG

dl
. ~22!

Proof. For a density functional defined as Eq.~19!, its
functional derivative is@1#

dG

dr
5

]g

]r
1~21!m

]m

~]xk!
m

]g

]rk
~m! . ~23!

With successive integration by parts, one can readily sh
that

K rUdGdr L 5 K rU]g]r L 1K r~m!U ]g

]r~m!L . ~24!

Following a previous work@16#, G@r ;l# can be transformed
by an integration by parts to
n

e

w

23G@r ;l#5^~r•“T!g&5 K rU]g]r L 1 K ~r•“ !rU]g]r L
1K xj ]g

]rk
~m!

]rk
~m!

]xj
L , ~25!

where “T denotes the total derivative with respect tor .
Combination of Eqs.~19! and ~23!–~25! and more integra-
tions by parts yield the identity of Eq.~20!. Here Eqs.~20!
and~25! are generalizations~to arbitrary order! of the results
~only first order! derived earlier@16#. A simple integration by
parts shows that, in general,

ŜcG@r ;l#53K rU]G]r L 1 K ~r•“ !rUdGdr L . ~26!

Combination of Eqs.~20!, ~24!, and ~26! yields the identity
of Eq. ~21!, and elimination of theŜc terms from Eqs.~9!
and ~21! delivers Eq.~22!. Q.E.D.

From this lemma, there follows a simple theorem, whi
can aid in the invention of new density functionals and se
as a criterion for judging the correctness of approxim
ones.

Theorem 1. The variables

$b~r !5r1/3~r !, z5 b/l , h5rb, jm5r~m!/b31mu
m51,2,...,n% ~27!

arenatural variablesof DFT which act as independent var
ables in place of$l,r ,r(r ),r (1),r (2),...,r (n)% in Eq. ~19!,
such that for any density functional satisfying Eqs.~9! and
~19!–~22! there exists

g~l,r ,r,r~1!,r~2!,...,r~n!![b31m f ~z,h,j1 ,j2 ,...,jn!
~28!

and hence

G@r ;l#[^b31m f ~z,h,j1 ,j2 ,...,jn!&, ~29!

where f is an analytic function of its variables.
Proof. After transforming the variables according to E

~27!, one has

l
dG

dl
52 K zU]g]z L , ~30!

K rU]g]r L 5 K hU]g]h L , ~31!

K r~m!U ]g

]r~m!L 5 K jmU ]g

]jm
L . ~32!

Further, with Eqs.~28! and ~29!, one has

3K rU]g]r L 53K rU]g]b

]b

]r L 13K rU]g]z

]z

]r L
13K rU]g]h

]h

]r L 13K rU ]g

]jm

]jm
]r L

5~31m!G@r ;l#1 K zU]g]z L
1 K hU]g]h L 2~31m!K jmU ]g

]jm
L . ~33!

Hence, for Eq.~22!, one obtains that
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~LHS![~RHS!52 K zU]g]z L 2 K hU]g]h L 1~31m!K jmU ]g

]jm
L .

~34!

Therefore, Eq.~29! is a general solution of the exact relatio
~9! and ~20!–~22!. Further, one can easily prove that a
departure from Eqs.~27!–~29! will destroy the identical
equality in Eq.~34!; hence the variables defined by Eq.~27!
are natural variables of DFT. Q.E.D.

Clearly, any exact density functional can always
brought into the form of Eqs.~28! and ~29!. Therefore, the
use of the natural variables in the construction of any
proximate density functionals will automatically ensure the
to satisfy Eqs.~9! and ~20!–~22!. Moreover, any genera
G@r ;l# can be obtained fromG@r ;l51# with the aid of
Theorem 1. For instance, the classical Wigner correla
functional @17# can be written as

Ec
l51@r#Wigner5^ab4/~11bb!& , ~35!

where $a,b% are fitting parameters. With Theorem 1, o
immediately gets@18,19#

Ec
l@r#Wigner5^ab4/~11bz!& , ~36!

which can then be used to generateTc
l@r# and Vc

l@r# via
Eqs.~6! and ~10!.

Generalizations of Theorem 1 to more complex functio
forms result in the following theorem and corollary to it.

Theorem 2. Assume a general density functional of th
form

G@r ;l#5 ^̂ g~l,v1 ,v2!&&, ~37!

where the variable setv i is

v i[$r i ,r i ,r i
~1! ,r i

~2! ,...,r i
~n!%. ~38!

It is understood here that the subscripts are electron indi
the double angular brackets are integrations over the coo
nates of two electrons,g is a symmetric analytic function o
its variables,r i and its gradients are strongly vanishing a
ymptotically. Then, the following identities hold:

dG

dr~r !
5KKS ]g

]r i
1~21!m

]m

~]xik!
m

]g

]r ik
~m!D d~r i2r !LL ,

~39!

K rUdGdr L 5 KK r iU ]g

]r i
LL 1KK r i

~m!U ]g

]r i
~m!LL , ~40!

26G@r ;l#5 KK r iU]g]r i
LL 1 KK ~r i•“ i !r iU ]g

]r i
LL

1KK xi j ]g

]r ik
~m!

]r ik
~m!

]xi j
LL , ~41!

6G@r ;l#1 K ~r•“ !rUdGdr L 5mKK r i
~m!U ]g

]r i
~m!LL

2 KK r iU]g]r i
LL , ~42!

6G@r ;l#1ŜcG@r ;l#
-

n

l

s,
i-

-

53KK r iU ]g

]r i
L L 1~31m!KK r i

~m!U ]g

]r i
~m!LL 2 KK r iU]g]r i

LL ,
~43!

and

~61m!G@r ;l#23KK r iU ]g

]r i
LL 5~31m!KK r i

~m!U ]g

]r i
~m!LL

2 KK r iU]g]r i
LL 1l

dG

dl
.

~44!

This theorem is given here without detailed proof since it
similar to the arguments used earlier.

In the language of the pair correlation function and t
exchange-correlation hole@1,2#, one has the following corol-
lary.

Corollary. Assume that in Eq.~37!,

g~l,v1 ,v2!5~r1r2/r 12!h~l,r1 ,r2 ,r 12!
5w~r1 ,r2 ,r 12!h~l,r1 ,r2 ,r 12!, ~45!

wherer 12 is the interelectronic distance andh is a symmetric
analytic function of its variables. Thenh has to satisfy the
equation

~m21!G@r ;l#2 KK b i

]h

]b i
UwLL

5 KK l
]h

]lUwLL 2 KK r 12 ]h

]r 12
UwLL . ~46!

Further,h can be chosen such that the integrands above
both sides are equal:

~m21!h2b i~]h/]b i !5l~]h/]l!2r 12~]h/]r 12! . ~47!

Proof of this corollary is omitted here, since it is just a
elementary application of Theorem 2. During the derivati
of Eq. ~46! from Eq. ~44!, one needs the two identities

r ~]/]r ![r•“5r ~]/]r ! ~48!

and

r 1~]h/]r 1! 1r 2~]h/]r 2!5r 12 ~]h/]r 12! . ~49!

Due to the unknown relationship betweenb1 andb2 , the
effort to pin down the natural variables for Eqs.~37! and~45!
is elusive. For example, among plausible candidates,h can
be written as

h~l,r1 ,r2 ,r 12!5b12
m21t~b12/l,r 12b12!, ~50!

wheret is an analytic function andb12 can be any symmetric
analytic function of b1 and b2 @e.g., (b1b2)

1/2 or (b1
n

1b2
n)1/n# as long as it satisfies

b1 ~]b12/]b1!1b2 ~]b12/]b2!5b12 ~51!

in Eqs.~46! and~47!. More studies ought to be carried out o
the function forms ofg(l,v1 ,v2) andh(l,r1 ,r2 ,r 12).

By the corollary, a requirement onh(l,r1 ,r2 ,r 12) is that
r1 andr2 must be explicitly included along withr 12; other-
wise Eq.~46! and, more strictly, Eq.~47! would not be true
in general~e.g., forEx@r#!. This is at variance with the con
ventional weighted-density approximation~WDA! @20,21#,
in which one only assumes a nonsymmetrich such that

g~l,v1 ,v2!5~r1r2/r 12!h~l,r1 ,r 12!. ~52!



he
ce
ib
q

io
-
-

e

e
d
on
o
A
th
b
el

nly
ysis

nal
at
ert
Dr.

of

he

4592 55BRIEF REPORTS
New generations of the WDA, which might be called t
generalized WDA~GWDA!, can be designed in accordan
with Theorem 2 and its corollary. For instance, one poss
GWDA scheme would employ simple symmetrization of E
~52!:

g~l,v1 ,v2!5
r1r2
r 12

h~l,r1 ,r 12!1h~l,r2 ,r 12!

2
. ~53!

Table I lists some approximations to the exact express
in Eqs. ~29! and ~37!, namely, the local-density approxima
tion ~LDA ! @13,15,17–19,22–24#, the reduced weighted
density approximation~RWDA!, the WDA @20,21#, the
GWDA, the gradient expansion approximation~GEA! @25–
31# and the generalized-gradient approximation~GGA!
@19,31–40#. It is interesting to note that the RWDA and th
GWDA are different from the classical WDA@20,21#. Nu-
merical performance of the RWDA and the GWDA schem
should be tested. Moreover, Theorem 1 points out new
rections in the effort to generate better approximate functi
als by either including more higher-order gradient terms
combining the merits of the RWDA and the GGA/GE
schemes. One may further point out that in order to fix
correct or approximate functional forms, this work should
employed along with scaling properties and other exact r
tions @e.g., Eqs.~10! and ~11!# of the DFT functionals@12–
s

m

le
.

n

s
i-
-
r

e
e
a-

15,18,19,31,37. Finally, the work presented here not o
confirms but also generalizes the naive dimensional anal
@1#.
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TABLE I. Some approximations to the exact expressions
Eqs.~29! and ~37!. The interelectronic coupling constantl will be
set to 1 for realistic full Coulomb systems. The definitions of t
variables are shown in Eq.~27!.

Approximation Functional forms References

LDA ^b31m f (z)& @13,15,17–19,22–24#
GEA ^b31m f (z,j1 ,j2,j3)& @25–31#
GGA ^b31m f (z,j1)& @19,31–40#
RWDA ^b31m f (z,h)& this work
WDA Eq. ~52! @20,21#
GWDA Eqs.~37!, ~45!,

~50!, and~53!
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