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Natural variables for density functionals
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Various energy functionals in density-functional theory must possess the formgot#“f(¢,
7,€1,€2,...,£,)), if one assumes that they can be expresség@s,r,p(r),p™M,p@, ... ,p™)). Herep(r) and
p{™ are the electron density and itgth-order gradientf andg are proper analytic functions of their variables;
w is 2 when the functionals ar€J[p], TA[p], and T p] (otherwise it equals)i \ is the electron-electron
interaction coupling constant in the adiabatic connection formulation;{#d, 7,£,,&,,...,&.} is a set of
independent variablegalled natural variables in place of{\,r,p,p¥,p®@,... p(M}. These variables are
defined ag B(r)=p*¥(r), {=BIN, =18, én=p™/B3 M m=1,2,...n}. Generalizations to more complex
functional forms are also discussed. Some exact relationships are derived that should be useful for developing
density functionals of the weighted-density approximation tyf&.050-29477)01806-4

PACS numbds): 31.15.Ew

The immense success of the modern density-functionsnd thex-dependent correlation function&R[ p],
theory (DFT) [1,2] originated from two paper3,4] by Ho- N X N
henberg, Kohn, and Sham more than three decades ago, in Eclp]=(1M)Tclp]+Velp], ®)
which the electron density(r) was legitimatized as the basic where
variable of ground-state quantum chemistry. However, the R .
existence of the Hohenberg-KohhiK) theorems[3] does Tolp]= (WMT|®Y) — (WA= T|W*=0) =T p] - T p],
not help much in the construction of the exact total-energy (7)
functional (hence its component$rom p(r). From the later

1970s on, the adiabatic connection formulati&+-7] and and

later the constrained-search formulat[&9] have nourished VALp]= (WM |Ved W) — (WA =0V J w=0)

much of the advancement in DFT. =Vxe[p]—V°e[p] @)
e e "

Via the constrained-search formulatif$ 9], the HK uni-
versal functiona[3] F,[p], defined within an extended do- The following exact relations have been established for
main the J(p], Elpl, Eclpl. Eidpl, Tdpl, Telpl, Tpl,

FA[P]:<\P)\|%+)\Qee|\I’A>a 1) Ved pl, Velpl, andVed p] functionals[12—15:

always has a minimum[10] for an antisymmetric nGlpA]=N dG[pA]/d\ +SGp ], ©
N-electron wave function¥*, with a specific electron-
electron interaction coupling constaxt(which must be set
equal to 1 for realistic full Coulomb system#lere¥™ gen-  and
erates arN- andv-representablge(r) and is an eigenstate of N N \ N
the coupled Hamiltoniafil1] dVedp] _dVelp] — 1dTc[p] ~ 1dTp]
dx dA N dh N dh

Tilp]=dENpl/d(1IN) = dE}[p]/d(1N), (10

T . (11
H\=T+\Veet Vi, 2
~ A ~ L Here
whereT, Ve, andVg,, are the kinetic energy, the electron-
electron repulsion, and the external potential operators, re- 2
spectively. In the spirit of the Kohn-Sham theofy], Se=— | d7 p(r)(r-V)[ &/ 5p(r)] (12)

F.[p] is partitioned into three main pieces ] ) ) ]
is the functional coordinate-scaling operatofl5] and

Falp]=Tdp]+NI[p]+NEx]p], (3 G[p.\] is a dummy density functional in place of any of
those just mentioned above. In E@), u is 2 for T p],
Té[p], andTM p] (otherwise, it equals)land the first term
of the right-hand sidéRHS) involving N will vanish auto-
matically if G[ p.\] is N\ independent, i.e.,

where T p] is the noninteracting N=0) kinetic-energy

functional, J[ p] is the classical electron-electron Coulomb
repulsion functional, anoEZ;c[p] is the exact exchange-
correlation functional.EXJp] in turn can be decomposed

into two component§12] G[pA]=G[p]. (13
A _ A
Exdpl=Edpl+Eclpl. 4) For later use, one defines theth-order gradient op(r) as
namely, thex-independent exchange functior&|[ p],
e - (m)EVm rN= (m) 14
Edp]= (W 0V d W20~ [ p]=V2{ p] - I[p], (5 pM=Vp(n= 20 19
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and a compact notation for an arbitrary analytic function

g(p™),
P99l 9p'™)= 2 pi™ (991 p™) (15
wherep{™ denotes one component pf™,
i = dp(r) _ 3"p(r) 16

(%)™ X1 IXa" ** Ak

Here{Xy1 ,Xk2,--- Xkmt IS @ specifiqthe kth) combination of
the three coordinate indicef,y,z} and the unit vectors
along axis directions are stripped from Ed4) for simplic-
ity. More generally, for an entity

95% Oy

and its arbitrary analytic functiog(6), there is a compact
notation

17

0(ag/aa)z§k) 0,(39/96y) . (18)
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99 99
)+l
Vop™  ax

where V; denotes the total derivative with respect o
Combination of Egs(19) and (23)—(25) and more integra-
tions by parts yield the identity of Eq20). Here Eqs.(20)
and(25) are generalization&o arbitrary order of the results
(only first ordey derived earlief16]. A simple integration by
parts shows that, in general,

- G oG
sce[p;x]:3<p 5> +<<r~V>p 5—p>.

Combination of Egs(20), (24), and(26) yields the identity
of Eq. (21), and elimination of theS; terms from Eqs(9)
and(21) delivers Eq.(22). Q.E.D.

From this lemma, there follows a simple theorem, which
can aid in the invention of new density functionals and serve
as a criterion for judging the correctness of approximate
ones.

Theorem 1The variables

—SG[p;x]=<<r-vT>g>=<r

(25

(26)

Unless otherwise noticed hereafter, the Einstein summation{ﬁ(r):pua(r), (=BIN, p=rB, &n=p™/p3tm|

convention will be applied over repeated indices.

Lemma.Assume a general density functional of the form

GlpN=(g(\.1.p,p™M,p?, ... pM)), (19

whereg is an analytic function of its variables, apdand its

m=1,2,...n} (27)

arenatural variablesof DFT which act as independent vari-
ables in place off\,r,p(r),p™,p@,...pM} in Eq. (19),
such that for any density functional satisfying E¢8). and

gradients are strongly vanishing asymptotically. Then thd19—(22) there exists

following identities hold:

g()\iripip(l)vp(Z)v"'1p(n))EIBS+Mf(§1 U1§1,§21---7§n)

oG\ m ag ag (28)
3GLp:M ]+ (r-V)p5—p M P T e ) and hence
G[p;}\]E<B3+’uf(§v77!§11§2!'--1§n)>1 (29)
A d9 g wheref is an analytic function of its variables.
= = (m)
3GLpAI+SGlpA] 3<p(9p> +(3+m)<p ap<m>> Proof. After transforming the variables according to Eq.
dg (27), one has
—{r=), (21
or \ dG <£‘&g> 30
and dx gl
dg ag J9 99
_ =)= (m| = )= —=
(3+w1)G[p,\] 3<p‘ap> (3+m)<p ap(m)> <r ar> <7; a7;>' (32)
%9 +A 4G 22
V) e @ m| 29\ _[, |28
PG ) = &m ErE (32)
Proof. For a density functional defined as Ed.9), its _ m
functional derivative i§1] Further, with Eqs(28) and(29), one has
5G  dg M ag < ag> < a9 <9/3> < 9 &§>
e ()" —— —— 3 pl—)=3{p|——)+3( p|== —
Sp  dp +=1) (%)™ ap™ @3 Plap Plap ap Plag ap
: o _ _ dg dn 99 9&m
With successive integration by parts, one can readily show +3\p 97 90 +3(p ga—
that n op i m °P
ﬁ B ﬁ_g o (7_9 0 :(3+/,L)G[p;)\]+ gﬁ_f
Pla0] =\ o) T\ laa™) T L R N PR FRE ¢
"on " 9]

Following a previous work16], G[ p.A ] can be transformed
by an integration by parts to

Hence, for Eq(22), one obtains that



(LHS)E(RHS):—<§§> < —>+(3+m)<§m

79 _ 79 m| 99 \\
a§m> _3<<pi api>>+(3+m)<<pi Ip™ i
(34
departure from Eqgs(27)—(29) will destroy the identical (6+/.L)G[p;)\]—3<<
Clearly, any exact density functional can always be
use of the natural variables in the construction of any ap- (44)
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Therefore, Eq(29) is a general solution of the exact relations and
(9) and (20)—(22). Further, one can easily prove that any
A omlor
I

equality in Eq.(34); hence the variables defined by Eg7) api I
are natural variables of DFT. Q.E.D. << ag>> N dG

(= —_—.
brought into the form of Eq928) and (29). Therefore, the 'ar; dr
proximate density functionals will automatically ensure themThis theorem is given here without detailed proof since it is
to satisfy Egs.(9) and (20)—(22). Moreover, any general similar to the arguments used earlier.

G[p.\] can be obtained fronG[p.A=1] with the aid of In the language of the pair correlation function and the
Theorem 1. For instance, the classical Wigner correlatiorexchange-correlation ho[é,2], one has the following corol-
functional[17] can be written as lary.
- Corollary. Assume that in Eq(37),
Es ' Lo]wigne=(aB*/(1+bp)), (35)

- _ g\, w1,w2) =(p1p2lT19N(N,p1,p2,712)
where {a,b} are fitting parameters. With Theorem 1, one =W(p1,p2.F 12NN, p1,p2,T12), (45
immediately get$18,19 ] ) o ]
wherer ¢, is the interelectronic distance ahds a symmetric
Eslplwigne= (@B (1+ b?)), (36)  analytic function of its variables. Them has to satisfy the
_ \ ) equation
which can then be used to generé’tﬁp] and V[ p] via
Egs.(6) and (10).
Generalizations of Theorem 1 to more complex functional

oh
v s3]

|

forms result in the following theorem and corollary to it. dh dh

Theorem 2 Assume a general density functional of the i rlzf12 Wil (46)
form

Further,h can be chosen such that the integrands above on
GlpA]=(g(\, w1, 02)), (37 both sides are equal:
where the variable seb; is (p=D)h=Bi(dhldB;) =N(dhlIN) =1 1(dhldr1,) . (47)
wi={ripi.pM . p?,...p"M}. (38)  Proof of this corollary is omitted here, since it is just an

elementary application of Theorem 2. During the derivation
It is understood here that the subscripts are electron indicesf Eq. (46) from Eq. (44), one needs the two identities
the double angular brackets are integrations over the coordi- .
nates of two electrong is a symmetric analytic function of r(alory=r-V=r(alr) (48)
its variables,p; and its gradients are strongly vanishing as-and

ymptotically. Then, the following identities hold: F1(AN1r ) +1o(AN1Ar ) =115 (NN 1) . (49)

5G o"g - om dg Due to the unknown relationship betwegpn and 3,, the
(1) +(=1) o(ri—=r))), effort to pin down the natural variables for E437) and(45)

(%)M (m)
ap' (i)™ p is elusive. For example, among plausible candidatesan

be written as
.<m>
apl P

9 (40) h(N.p1.p2.119) = Bi5 "t( B2/ NI 12812, (50
ap(m) wheret is an analytic function an@,, can be any symmetric
analytic function of 8; and B, [e.g., (8.8,)Y? or (B}

(39

9 + B%)*"] as long as it satisfies
<<r il <<<r ol >> s

m api B1 (3B12/dB1) + B2 (P12l 9B2) = B12 (52)

X 99 Ipi (41) in Egs.(46) and(47). More studies ought to be carried out on
T gp™ axi; ] the function forms ofy(\,wy,w,) andh(\,p1,p2,r12).

By the corollary, a requirement dn(\,p4,p2,r19) is that

v oG\ m| 99 p1 andp, must be explicitly included along with,,; other-

6G[pA ]+ (r-V)p ool pi ap™ wise Eq.(46) and, more strictly, Eq(47) would not be true
g in general(e.g., forE,[ p]). This is at variance with the con-

(42  ventional weighted-density approximatigdVDA) [20,21],

lil—
i in which one only assumes a nonsymmetrisuch that

6G[p;)\]+ASCG[p;)\] (N, w1,02) =(p1p2/T12)N(N,p1,T12). (52
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New generations of the WDA, which might be called the TABLE I. Some approximations to the exact expressions of
generalized WDAGWDA), can be designed in accordance ggs.(29) and (37). The interelectronic coupling constaxtwill be
with Theorem 2 and its corollary. For instance, one possibleet to 1 for realistic full Coulomb systems. The definitions of the
GWDA scheme would employ simple symmetrization of EQ.variables are shown in E§27).

(52):

Approximation Functional forms References

P1P2 h()\1p11r12)+h()\1p21r12)

G(A 03, 02)= EP) 2 (53 Lpa (B H1(0)) [13,15,17-19,22-24
GEA <B3+“f(§,§1,§2,§3)> [25—3]]
Table | lists some approximations to the exact expressioBGA (BFH(L,61)) [19,31-40
in Egs.(29) and(37), namely, the local-density approxima- rwDA (B (¢, m)) this work
tion (LDA) [13,15,17-19,22—-24 the reduced weighted- wpa Eq. (52 (20,21
density approximation(RWDA), the WDA [20,21], the gwpa Eqs. (37), (45) this work

GWDA, the gradient expansion approximati®EA) [25—
31] and the generalized-gradient approximati¢@GA)
[19,31-44Q. It is interesting to note that the RWDA and the

GW.DA are different from the classical WDf20,21. Nu- 15,18,19,31,37. Finally, the work presented here not only
merical performance of the RWDA and the G.WDA SCheme?confirms but also generalizes the naive dimensional analysis
should be tested. Moreover, Theorem 1 points out new dl[l]

rections in the effort to generate better approximate function="-

als by either including more higher-order gradient terms or

combining the merits of the RWDA and the GGA/GEA  This research was supported by a grant from the National
schemes. One may further point out that in order to fix theScience Foundation to the University of North Carolina at

correct or approximate functional forms, this work should beChapel Hill. Encouragement and help from Professor Robert

employed along with scaling properties and other exact relaG. Parr are gratefully appreciated, as are discussions with Dr.

(50), and(53)

tions[e.g., Eqs(10) and(11)] of the DFT functional§12—

Shubin Liu.
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