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Coordinate scaling and adiabatic-connection formulation in density-functional theory

Yan Alexander Want
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
(Received 24 February 1997

Five theorems and one lemma, regarding the limits of density functionals as one or several of the coordinate-
scaling parameters go to zero or infinity, are proved. A unified description of the coordinate-scaling method
and the adiabatic-connection formulation is also introdug®d050-294{®@7)03308-9

PACS numbds): 31.15.Ew

Modern density-functional theoDFT) [1] has benefited XA, =N NS ot XU 2V (6)
much from the coordinate-scaling methd@] and the
adiabatic-connection formulatidig], which have been used Here X%2T, X%2V,., and*%2VA,,, are coordinate scaled as
extensively in checking and developing density functionals

[1-4]. In the following, a unified formalism of these two R ) N 92 92 92
theoretical techniques is introduced within the framework of ET=—3> ( 2 VAl B YAl I 2
DFT. i=1 i Yi i
Via the constrained-search formulatiori5], the N 2 2 212
Hohenberg-Kohn(HK) universal functionall6] F,[py5/] xyzy 1/ (XJJF&JFZJ) (8
defined within an extended domain apeTes Y S
FAlpA5a= (B EITH AV WA PIRED, (D b ex=VexdXil a.yi 18,2 10), ©)
always has a minimurfi7] for an antisymmetrid-electron ~ With X; =X —X;, y;=y;—y;, andz;=z—z,,
wave function®[ p%%Z], with a specific non-negative inter- In the spirit of the Kohn-Sham(KS) theory [14],

: . . n xyzy . ” . ) TR
electron interaction coupling constantand three positive FalPag;] is partitioned into three main pieces:

coordinate-scaling parametelis,3,4}. Here,\I’”[pX}gf] gen- Xyz Xy z xyz NpoXyz
. o . F =T +A\J +\E , (10
erates a coordinate-scaléttrepresentable electron density ALPapl = Telpapcl + Ml papc] wdPapcl: (10

Papir), which relates to the original unscaled whereT{pX%Z] is the coordinate-scaled noninteracting (

v-representable electron densjifr) via [8-12] =0) kinetic-energy functionalJ[p}%7] is the coordinate-
scaled classical interelectron Coulomb repulsion functional,

wpe(X.y.2)=aBlp(ax,By.(2) ) N[ XY i i
Pap®sys plax,py,62). andE;{ p,5;] is the coordinate-scaled exchange-correlation

functional. Following an earlier work by Levy and Perdew

Al XY Z H H R
It can be showr(1,13] that W*[p,], is an eigenstate [g] one can decomposg) [ p}%7] into two components:
(not necessarily the ground statd the coupled Hamiltonian

Exd pabl = Exd pabf) + EelpiabEl; (1D
namely, thex-dependent coordinate-scaled exchange func-

whereT, Voo, andV2,, are the kinetic-energy, the interelec- tional Ex[po 571,
tron Coulomb repulsion, and the external potential operators,

Hy=T+A\Veet Vi, 3)

: - XYZ]_ /XYy A=0|XY Z\s |XYZypA=0\ _ Xyz
respectively. Using arguments presented eafllie®—13, Ex[PaM]_(aBé\p |a/3§VeJaﬁ£q’ ) Ipap:]
one can further show that :Vgipﬁfgf]—J[Pﬁﬁ], (12)
FALORBE] = Cob WM ahiT + NohiVed bt P™), (4)  and the\-independent coordinate-scaled correlation func-
tional E3[ p 571,

where, ;7¥* generateg(r) directly, minimizes
. . Eclpipil= (1) Telpihil+ Vel pakil, (13
W[LBT+NahiVed V), (5
< |ﬁ§ pe od¥) where

and is an eigenstate of the coordinate-scaled coupled Hamil- -
g p Té\[pxyz]:<xyz\1,}\|xyz-|— xqu,A>

tonian apB¢ apt™® laB?'lapg
A=0 T A=0
YT S 1 AR BY e S
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A _ Y 0
Velpthd = GV MapVed wpt¥ ™) — Ved Plst]
=Vedpibtl—Vedpihdl.
At \=0, Fy_o[p} %] reduces toTpi%?], *52¥*~° be-
comes a single Slater determingyi:® made from the first-

N KS orbitals {374}, and %%2Va,° turns into the KS
effective potential{ 32V [14].

(19

1647

can be treated as a perturbation to the kinetic-energy operator
in Eq. (7),

§2 ,32 (92 (,1’2 (92
—+——3+-—>—3|. (23
078 [P oyt % oxt 23
Also, physical intuition indicates thaﬁ;%é\?’gxt converges to
Ve asO(£28); otherwise, either%?Vs, would have a

Without loss of generality, the coordinate-scaling param-sionphysical residue for a virtually zerd7Vee, OF 3%/Vee

eters{B,Z} will be assumed to be analytic functions af

would have a nonphysical residue for an almost converged

Unless otherwise noted hereafter, a dUmmy fUnCtionakéé\’\/éxp Thus one can exparﬁ%z\lﬂ‘ as a power series from

Gilpk%7] will be used to denotdEd[ pX %71, Valpl%il, or
Tipi%z], and another dummy functiond[ p%%%] will be
used to denot&,[ pl%?1, J[pi%Zl, or Ved pibil.

The definitions of; ;7" and ;%7® ensure that

A A A A
Vel pab)<Eclpap]<O=<Tc[pihil<—A\VclpLh;

1.
(16)

Using Egs.(13) and(16), one arrives at a lemma.
Lemma: If an analytic function of, fq(«), satisfies

lim(fo(@)Velpike)) =0, (17)

then it also satisfies

lim(fo( @) Gel p 1) =0. (18

Similarly, if an analytic function ofr, f(«), satisfies

lim (f () Ve[ p%E]) = const, (19

then it also satisfies

lim(f1(a)GY[ p}%Z]) = const. (20)

In  principle, for an analytic function f,(«),

(23
XYz

«p¢® With the parameteg,

V=TI X CREODE (24)
where %%Z®} is the nth-order wave function. Inserting Eq.
(24) into Eq.(15) yields

VALpig=a S VPRI @9

whereVA[ pL57] is thenth-order correlation potential energy.
From Eq.(25) and the lemma, one arrives at the following
theorem.

Theorem 1:Assume that agx— 0, a<B<{, and lim,¢
=0. If an analytic function of, fy(«a), satisfies

lim ,(f2(a) EX[ p}%Z]) can be zero, a finite constant, or infin- then it also satisfies

Xyz Xyz

ity when lim,(f,(a) Te[p357]) and lim,(fo(@) Vel p35:])

diverge. However, there is a great chance practically for

lim (fo( @) @£)=0, (26)
a—0
then it also satisfies
lim (fo( @) Ge[p%p71)=0. 27)
a—0
Similarly, if an analytic function of, f,(«), satisfies
lim (f1(a) &)= const, (28
a—0
lim (f1(a)GY[ p}%Z1) = const. (29

a—0

them all to be divergent at the same time. This lemma sug-
gests that one only need to pay attention to the limit ofs simple choice forf,(a) in Eq. (28) is just 1/(a¢).

f(a)Vé[pf,ﬁ] in order to figure out the limits of
f(a)EL[pf¢] and f(a)Ti[pl%Z] for an analytic function
f(a). The two special cases—0 and a—o will be con-
sidered below.

First, asa—0, {a,8,{} are assumed to be<g<{, and
é=(al?) is assumed to be 0:

lim £=0.

a—0

(21)

Then the interelectron Coulomb interaction operator in Eq.

(8),

X2+a2 2+a222 112
iT 2 YiT 72 4]

B 7 (22

N
zézvee: ngz 1/

When Eq.(21) is invalid, the interelectron Coulomb in-
teraction operator in Eq22) can no longer be treated as a
perturbation to the kinetic-energy operator in E23), and
hence Eqgs(24) and(25) are also invalid. However, one can
still rely on the lemma, and conclude the following theorem,
since this time V[ pX%7] is simply O(a).

Theorem 2: Assume that asa—0, as<p</{, and
lim,|&|>0. If an analytic function ofy, fo(a), satisfies

lim (fo(a)@)=0, (30
a—0
then it also satisfies
lim (fo(@)Gel p 5D =0. (31)

a—0
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Similarly, if an analytic function ofy, f,(«), satisfies

lim (f1(a@) @)=const, (32
a—0
then is also satisfies
lim (f1(a) G} p}%f])=const. (33

a—0

Second, asy—, {a,B8,{} are assumed to be=gB=/,
and »=(¢/a?) is always O:

lim »=0.

a—

(39
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TABLE I. Some popular choices fdr,3,{} and their associated
fo(a), f1(a@), go(@), andg;(«) functions in theorems 1-%8°

{a.B.8} fo(a) fi(a) go(a) g1(a)
{aX,aX,a® a P (p<k) ak aP (p<0) 1
{ak,am,a"} a P (p<q) a @ aP (p<q) af

aSome of these cases can be found in Rgfs8—10, but with A
=1

bThe coordinate-scaling parametergy,3,{} are assumed as
{aX,a™ a"}, such thak=m=n andq=2(k—n)>0.

‘Thesefy(a), fi(a), go(a), and g,(a) functions are taken as
simple powers ofv.

Then the interelectron Coulomb interaction operator in EqA simple choice forg,(a) in Eq. (41) is just 1/ 7).

(8),

1/2

2 2
ARES

{
2 2
zij+ﬁyij+?x-

N
Y
)c(z%%zvee_a ﬂigj 1/

can be regarded as a perturbation to the kinetic-energy op-

erator in Eq.(7),

52 &2
AT

Based on a reason similar to that abo§;Vs,, converges to
Ve asO(a?n). Thus one can expang;¥™* as a power
series from/® with the parameter,

XY Z\ph — XY Z XY ZgN
apr¥ _aBs”qH'ngl Gapz®0) 7", (37

where {%7®7 is the nth-order wave function. Inserting Eq.

(37) into Eq. (15) yields
Velpihil=¢ nZ,l Vilpagel ", (38

Xyz

where VQ[paﬁg] is the nth-order correlation potential en-
ergy. From Eq.(38) and the lemma, one arrives at the fol-

lowing theorem.
Theorem 3: Assume that asa—x, a=p=¢, and
lim,#=0. If an analytic function ofy, go(«), satisfies

lim (go(@){7)=0,

a— 0

(39

then it also satisfies

lim (go( @) Gl p5E)=0.

a—®

(40

Similarly, if an analytic function ofy, g,(«), satisfies

lim (91(a)¢{n)=const, (41)
then it also satisfies
lim (91(a)Gy[ pi}7])=const. (42)

a—

Many requirements foEé‘[pﬁﬁ] obtained earlief2,8—

10] are applications of these three theorems. Especially, at
N =1, the constants in Eq§36b) and(43b) of Ref.[10] are
identified as zero:

lim («E[peif]) = lim (El pi2 11/ a®)=0.

a—x®

(43

a—0

Following the description of the lemma and theorems 1-3,
one can easily carry out the same analysis for more complex
cases as those collected in Table I. It is also necessary to
emphasize that the present discussion differs from an earlier
work [10] in two ways: first, Eq(16) and the lemma have
been observed throughout the derivation, and, second, the
convergence property df}?Vs,, has been taken into consid-
eration in the perturbation expansions of E@1) and(37).

The same kind of analysis can also be carried out for
E.lpLpz]- Using the KS orbitals, one can readily simplify
Eqg. (12) to

2 2 2\ 1/2
E[ xyz]:_l |Xy2,yKS(r r)|2 X_12+y_12+z_12
xLP oy 2\ laB¢ 1,12 6(2 BZ §2 '
(44)

where % %2y %(r1,r,) is the KS first-order reduced density

matrix:

N
whey S =2 TR () 1" X (R r)]
(45)

Invoking Roothaan’s argumen{5], one knows that

= I PLs)=<Edpib]<0. (46)

Xyz

Also, a direct observation of the positivity Mge[paﬂg] from
Eq. (12 and the negativity of,[ p;%/] from Eq.(44) leads
to a much simpler derivation of the same result.

Theorem 4:Assume that, ag—0, a< </,

lim(B8/a)=Cg, and

a—0

lim(¢/a)=Cy,.

a—0

(47)

If an analytic function ofe, h(a), satisfies
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lim (h(a) @)= Ch,q, (48) Falpanal= @®Fyalpl. (53
a—0
) o From Egs.(10)—(15) and (53), one can further derive the
then it also satisfies following identities:
XYz
o (LoD =Cratllpit, 2, ) (49 TUPE=aTIp) HIpE=aHlo)
Theorem 5:Assume that ag—®, a=8=/, KM pital=a?KN[p], LM pili]l=alM[p],
lim (a/B)=C,s; and lim(a/{)=C,;. (50  where the dummy function& [ p*¥ 2] denotesTA[ p*Y2] or
a—e e TMpXY2], and the dummy functional* p%XY2] denotes

ExlpiY2], EA 2], VALPRYZ], or VAL p2]. In Eq.(54),

aaa aaa aoa aaa

If an analytic function ofa, k(«), satisfies the first two identities were first introduced in Rg8], and

lim (k(a){)=Cy;, (51 the identity forE [ p,Y %] was derived in Refd.16,17. Fur-
a—o ther, the general identity fdEX pX¥2] in Eq. (54) has been
) L used to generaliz€l8] the original Levy-Perdew equation
then it also satisfies [8,17] to
lm ((@HLpI5D = CiHIPELE 0l (52 X X JEN PV
Telp]=—AEclp]+ N —-— : (55
The proofs of theorems 4 and 5 from E¢44) and (46) at
are elementary, and hence are omitted here. Also, @§s. from the identity[19]
and (52) automatically satisfy the general inequality in Eq.
(46). With these five theorems and the lemma, one can then \ ) dEﬁ[p]
easily discuss the limits of(«) E)”(C[p%f] for any analytic Telpl=— dn (56)

function f(a).

Finally, it is worthwhile to point out the intrinsic equiva- This research was supported by a grant from the National
lence[16,17] between the uniform coordinate scalifig,8]  Science Foundation to the University of North Carolina at
and the adiabatic-connection formulati8i. In Egs.(1) and  Chapel Hill. Encouragement and help from Professor Robert
(4), after settinga=B={¢, one has an identity G. Parr are gratefully appreciated.
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