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Improved lower bounds for uncertaintylike relationships in many-body systems
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We show that employing more stringent inequalities in the derivation of uncertaintylike relationships can
improve their accuracy. In particular, E®3) due to Romerat al. [Phys. Rev. A59, 4064 (1999] can be
further improved using the Faris inequalities rather than using tHdednequalities.
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In a recent papelrl], Romeraet al. have considered the

DY

Fisher information entrop}2] and its application in the deri- > ) > (8)
vation of general uncertaintylike relationships in quantum N N
mechanicq 1,3,4. Basically, these authors have discussedthese authors could further show tfiai
the following uncertainty products:
B <ra> 1/a <pb> 1b = 4A72A2 . (9)
A(a,b)= N ~N | (1 \/(4A2)2+(A72)_2_8

where radial expectation values are defined as

However, we contend that Eq7) can be further im-
proved by simply using the Faris inequalitieg

(= [ rpniar, (9= [ pvorn, @ Hp?)=(re), Ar)=(p7%). (19
From Egs.(5), (6), and(10), one readily has
for the normalized one-particle densities in position space
r) and momentum spa , 4p?Wp~2 (r2(p2
p(r) pace(p) <p>if ) S >if oAyt ap
N N
j P(f)dr=f y(p)dp=N. ©) N o, n
A (r=) _(r o )E(A )2 12
In particular, these authors have discussed in depth the un- N2 N? o

certaintylike relationships involving\_;, A_,, and A,,
whereA,=A(a,a). From the definition in Eq(1), one can
explicitly write

N2
Vr2)(p?)

AzET, 5

Ay

(4)

N
A= (6)

Wr 2%
After some manipulation, Romegt al. showed[1] that

4A_,A,

\/(4A2)2+(A2)2—4<r Mr2)+(p2)(p 2

N2
(7

Using the following two inequalitie¢due to the Hter in-
equality[5]):

A_=
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Equations(11) and (12) are more sensitive with respect to
dynamical changes in densities than E8). because of the
explicit dependence oA _, instead of a constant. This con-
clusion is only valid if and only if 7]

1

A_ps > (13

which is apparent upon examining E@8), (11), and(12).
Equation (13) is empirically proven for all neutral atoms
with nuclear charg&=<92 (Table ).

If Eq. (13) is true in general, then Eq20) of Ref.[1],

2A, 2A,
<A s————— (14
X+ 6+ VX(X+8) X+6—JX(X+8)
x=4(A7)%-9, (15
can be further simplified as
2A, A 1 16
— < A_,=—.
X+ 6+ X(x+8) 272

Due to the following celebrated inequaliftg,4]:
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TABLE I. Improved lower bounds ta& _; from Eg.(7) involv-
ing the uncertainty products,, A _,, andA _;. All numbers are in
atomic units. The data fak,, A_,, andA _; are from Ref[1].
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TABLE Il. Comparison of the accuracies of the lower bounds to
A, based on functions af _,. All numbers are in atomic units. The
data forA, andA _, are from Ref[1].

Accuracy? (in %)

Accuracy? (in %)

z A, Ay A, Eq.(9° Eq.(20 z A, A, Eq.(17)° Eq.(29 ¢ Eq.(22)
1 0.31623  0.58905  1.7321 52.6 60.3 1 0.31623  1.7321 86.60 91.28 45.64
2 0.28560  0.55372  1.8413 49.7 58.6 2 0.28560  1.8413 81.46 88.15 47.54
6 0.14854  0.42587 5.3738 335 36.7 6 0.14854  5.3738 27.91 40.50 31.32
15 0.11002  0.41000 9.5734 26.2 276 15  0.11002 9.5734 15.67 27.83 23.74
29  0.093713 052219  11.217 17.5 185 20  0.059872 13.838 10.84 31.84 30.17
45  0.081761  0.48903  15.612 16.4 17.0 29 0.093713 11.217 13.37 26.84 23.78
72 0.057027 0.46255  21.079 12.1 12.6 30 0.081313 11.756 12.76 28.73 26.15
92 0.044760 0.41726  27.402 10.5 11.0 45 0.081761 15.612 9.61 21.54 19.59
_ : 48  0.071069 16.053 9.34 23.59 21.91
ZSHZ\Q";% f;‘f{;‘f,rge(‘ma;e[fﬂ;,ffe accuracy of the expressigh g5 50345 21977 6.83 23.49 22,59
®The data for this column are identical to that of E24) in Table 2 0.057027 21.079 .12 21.84 20.80
92  0.044760 27.402 5.47 21.02 20.38

Il of Ref. [1].

A, (17

Then it also follows that

2A, 1 2A,
<-< ,
X+6+X(x+8) 2 x+6—x(x+8)

which simply says that the upper bound of Etd) is always
less sensitive thah if Eq. (13) is true in general. Equations
(13) and(17) indicate a zero overlap betweén , andA,.

In addition, if Eq.(13) is true in general, one then has a very
interesting inequality based on the Faris inequalifie$],
Eq. (10),

(18

A,fzésnqu«—zQJuzfzn, (19

which suggests thaA _, only overlaps withA(—2,2) or
A(2,—2) at the boundary valug. Given all these intriguing

results, it is highly desirable to rigorously prove or disprove

Eqg. (13).
Substituting Eqs(11) and(12) into Eq.(7), one immedi-
ately has
A_LA
A= . 282 _,
V(A2)°=(4A_))

(20

which is simpler than Eq(9). Table | shows that E¢20)
derived here is numerically more accurate than .de-
rived by Romeraet al. The numerical Hartree-Fock wave

dFollowing Romeraet al. [1], the accuracy of the expressigh
<B as the raticA/B (in percen}.

PEquation(17) is equivalent to Eq(3) of Ref. [1].

“Equation(23) is equivalent to Eq(21) of Ref. [1].

one can easily show that
- — | =1, (21
(r 5)(<p %)

Moreover, using the same Faris inequalifié Eg. (10),
4P| [ 4(r?)
which directly ensures the non-negativity of the argument of
the square root in the denominator of Eg0)

(4A2A2>ZE(

A,=(4A_,) L. (22

Thus, Eq.(20) is always meaningful and real.
Interestingly, Eq.(22) is a new lower bound ta\, in
terms of A_,. Table Il shows that Eq22) is less sensitive

than Eq.(21) of Ref. [1],

z+\z°+12
= (23)
4
ZEZA,2+(2A,2)71, (24)

but definitely much better than Eq17) for neutral atoms
with nuclear charge&=6.

We have provided numerical evidence that demonstrates
the benefit of a more sensitive choice of the inequalities in
the derivation of the general uncertaintylike relationships in
quantum mechanics. This should encourage more effort to-
wards this direction in future research.

functions[8] were used to calculate the uncertainty products Financial support for this project was provided by the

involved[1].
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