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Within the framework of zero-temperature Fock-space density-functional theory(DFT), we prove that the
Gâteaux functional derivative of the universal density functional,dFlfrg /drsrdur=r0

, at ground-state densities
with arbitrary normalizationsskr0srdl=nPR+d and an electron-electron interaction strengthl, is uniquely
defined, but is discontinuous when the number of electronsn becomes an integer, thus providing a mathemati-
cally rigorous confirmation for the “derivative discontinuity” initially discovered by Perdewet al. [Phys. Rev.
Lett. 49, 1691(1982)]. However, the functional derivative of the exchange-correlation functional is continuous
with respect to the number of electrons in Fock space; i.e., there is no “derivative discontinuity” for the
exchange-correlation functional at an integer electron number. For a ground-state densityr0,n

v,lsrd of an external
potentialvsrd, we show thatdFlfrg /drsrdur=r0,n

v,l=mSM
n −vsrd, where the constantmSM

n is given by the following
chain of dependences:r0,n

v,lsrd° fvg°E0
v,lsnd°mSM

n =]E0
v,lskd /]kuk=n. Here fvg is the class of the external

potentialvsrd up to a real constant, andmSM
n is the chemical potential defined according to statistical mechan-

ics. At an integer electron numberN, we find that there is no freedom of adding an arbitrary constant to the
value of the chemical potentialmSM

N , whose exact value is generally not the popular preference of the negative
of Mulliken’s electronegativity, −12sI +Ad, whereI andA are the first ionization potential and the first electron
affinity, respectively. In addition, for any external potential converging to the same constant at infinity in all
directions, we resolve thatmSM

N =−I. Finally, the equalitymDFT=mSM
n is rigorously derived via an alternative

route, wheremDFT is the Lagrangian multiplier used to constrain the normalization of the density in the
traditional DFT approach.
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I. INTRODUCTION

The functional derivative of the universal density func-
tional Ffrg plays an important role in density-functional
theory (DFT) [1–55].

On the one hand, mathematical theorems of the existence
of this functional derivative at ensemblev-representable den-
sities of wave functions in anN-particle Hilbert space1 were
proved by Englisch and Englisch[10], by Lieb [11], by van
Leeuwen[12], and by Lindgren and Salomonson[13]. An
important technical feature in their approaches is the fixed
number of electrons[7–13], although the normalization of
the density during the variation can vary[10–13]. There is an
explicit method for keeping the normalization of the density
fixed [7,14], but it has not been extensively used in DFT.

On the other hand, the traditional method of imposing the
normalization is a subtle one[7,13]. During the variation of
the density-functional energy expression, the normalization
of the densityrsrd is allowed to vary, with an additional
Lagrangian multiplier term to account for the constraint to an
integer electron numberN at the final stationary point:

Ffrg + kvsrdrsrdl + mDFTfkrsrdl − Ng , s1d

wherekfsrdl is a shorthand integration notation of a function
fsrd over the entire space ofr ,efsrddt. It is tacitly assumed
that the functional derivative

dFfrg
drsrd

s2d

exists for the expanded variational domain, while referring to
the above-mentioned theorems for a fixed number of elec-
trons in Hilbert space[10–13].

If the Lagarange multiplier method is used, the universal
density functional should be defined for densities with an
arbitrary normalization, corresponding to wave functions in
Fock space, where the above-mentioned theorems of Hilbert
space are not directly applicable. Thus, the traditional justi-
fication of the Euler-Lagrange equation in DFT is logically
inconsistent, because the forms and properties of the various
density functionals might be different in Fock and Hilbert
spaces.

There are several motivating examples beyond the justifi-
cation of the Euler-Lagrange equation. A variable normaliza-
tion of the density reflects a physical situation with a variable
number of electrons. In the DFT literature, there are several
results related to the notion of functional derivatives that are
of questionable validity, from a mathematical point of view:
the “exchange-correlation derivative discontinuity”[16–30],
the so-called “Janak’s theorem”[31–37], the set of homoge-
neity relations “proved” by Parr and Liu[41,42], and the

*Corresponding author. Electronic address: yawang@chem.ubc.ca
1Hereafter for convenience,Hilbert spacewill be used to signify

any formulation built upon wave functions of a fixed number of
particles, whileFock spacewill be utilized to describe other for-
malisms constructed from wave functions of a varied number of
particles. Technically speaking, the fermionic Fock spaceF f is a
fermionic Hilbert space made from the direct sum of antisymme-
trized tensor productsHN of the single-particle Hilbert spacesH
[56]: F f ; %N=0

` HN, with HN; ÂH^N for the antisymmetrizerÂ.
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value of the chemical potential[7,12–17,42–48]. Concerns
were raised in all of the three cases, but the analysis was
perplexed due to the unknown nature of the functional de-
rivative in Fock space[13,37,41].

Particularly, the so-called “exchange-correlation deriva-
tive discontinuity” has drawn quite considerable attention re-
cently [16–30]. In the past, there was an earlier attempt to
construct a discontinuous functional by Levy and co-workers
[16]. Later, an alternative nonvariational approach became
popular, in which one would try to directly incorporate the
assumed discontinuous behavior into the exchange-
correlation potential. The major proponents of this later ap-
proach are Tozer and co-workers[25], Casida and co-
workers [26], and Baerends and co-workers[27]. Although
these types of exchange-correlation potential often have em-
pirical parameters, they are of paramount importance in
time-dependent DFT, response property, and NMR shielding
constant calculations and in obtaining the exchange-
correlation potential from the density[25–30]. The works by
Tozer and others[25–30] further suggest that thereal
exchange-correlation density energy functionals should be
designed such that their approximate exchange-correlation
potentials should average between the electron-deficient and
electron-abundant limits, in accordance with the veryspecial
value of the chemical potential as being the negative of Mul-
liken’s electronegativity [7,15–17,36,48,57,58]. Unfortu-
nately, there are already at least six different values for the
chemical potential within the present DFT framework
[7,12–17,42–48]. Moreover, the backbone of the “exchange-
correlation derivative discontinuity” arguments[16–30] re-
lies heavily on the exact value of the chemical potential.
Naturally, one would like to ask the following questions:
Which one is the exact value for the chemical potential?
Does the exact value for the chemical potential differ from
the one commonly employed in the theory of the “exchange-
correlation derivative discontinuity”[16–30]? What are the
consequences if they are indeed distinct?

We set up our goal to resolve all of these issues in this
paper. In the following sections, we will adopt the finite-
temperature generalization of DFT[4] to fractional electron
numbers[18–23,38–40], and based on this, we will extend
the results of Englisch and Englisch[10], Lieb [11], van
Leeuwen[12], and Lindgren and Salomonson[13] from Hil-
bert space to Fock space. In the end, our arguments will
unambiguously provide a comprehensive, coherent, and con-
sistent understanding of the functional derivative in Fock
space, the value of the chemical potential, and the functional
derivative discontinuity.

II. TRADITIONAL HILBERT-SPACE DFT

The spinless ensemble density matrix forN electrons is2

D̂N = o
s1,…,sN

o
p=1

`

cpuCpsr1s1,…,rNsNdlkCpsr18s1,…,rN8sNdu,

s3d

wherehCpsr1s1,… ,rNsNdj are normalizedN-electron wave
functions with electroni at positionr i with spin si and typi-

cally all but a finite number of the coefficientshcpj are zero.
In addition,

o
p=1

`

ucpu2 = 1. s4d

In the following, density matrices are used instead of wave
functions to account for possible degeneracies[5,6,11,12].
The kinetic, electron-electron repulsion, and nuclear-electron
attraction operators forN electrons are

T̂ = −
1

2o
i=1

N

=i
2 = −

1

2o
i=1

N S ]2

] xi
2 +

]2

] yi
2 +

]2

] zi
2D , s5d

V̂ee= o
i=1

N

o
j.i

N
1

ur i − r ju
, s6d

and

V̂ne
v = o

i=1

N

vsr id, s7d

respectively. For generality, we will allow the electron-
electron interaction to be of an arbitrary strengthl between 0
and 1, and we will only consider those total electronic
Hamiltonians

Ĥv,l = T̂ + lV̂ee+ V̂ne
v , s8d

which have eigenvalues bounded from below.
The universal density functionalFlfrNg with an electron-

electron interaction strengthl is defined by Levy’s con-
strained search method[5,6,11,12] as

FlfrNg = inf
D̂N→rN

FlfD̂Ng = inf
D̂N→rN

TrfsT̂ + lV̂eedD̂Ng , s9d

where the universal density-matrix functionalFlfD̂Ng with
an electron-electron interaction strengthl is defined as

2The Dirac notation will be used wherever possible, unless other-
wise noted.
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FlfD̂Ng = TrfsT̂ + lV̂eedD̂Ng

= o
p=1

`

ucpu2H−
1

2o
i=1

N

kCpsr1s1,…,rNsNdu=i
2uCpsr1s1,…,rNsNdl

+ lo
i=1

N

o
j.i

N KCpsr1s1,…,rNsNdU 1

ur i − r ju
UCpsr1s1,…,rNsNdLJ . s10d

The expression

D̂N → rN s11d

under the sign of infimization in Eq.(9) means that the search in the density matricesD̂N is constrained to those yielding a
given densityrNsrd:

rNsrd = Trfr̂NsrdD̂Ng = o
p=1

`

ucpu2KCpsr1s1,…,rNsNdUo
i=1

N

dsr − r idUCpsr1s1,…,rNsNdL , s12d

wherer̂Nsrd is theN-particle density operator,oi=1
N dsr −r id.

Finally, the DFT variational principle gives the ground-
state energy for a given external potentialvsrd:

E0,N
v,l = min

rN

hFlfrNg + Vne
v frNgj = Flfr0,N

v,lg + Vne
v fr0,N

v,lg,

s13d

where the nuclear-electron attraction energy density func-
tional is

Vne
v frNg = kvsrdrNsrdl, s14d

andr0,N
v,lsrd is the ground-state density, which determines the

ground-state density matrixD̂0,N
v,l through Eq.(9). As shown

by Lieb [11] and van Leeuwen[12], one can write thesame
universal density functional in Eq.(9) alternatively as the
Legendre transform functional[1,2,11,12]

FlfrNg = sup
v

hE0,N
v,l − Vne

v frNgj , s15d

where the supremum will become a maximum for a ground-
state densityr0,N

v,lsrd:

Flfr0,N
v,lg = FHK

l fr0,N
v,lg = max

u
hE0,N

u,l − Vne
u fr0,N

v,lgj

= E0,N
v,l − Vne

v fr0,N
v,lg. s16d

Obviously, Eq.(16) is a simple restatement of the DFT varia-
tional principle shown in Eq.(13), and the maximum of Eq.
(16) is also called as the Hohenberg-Kohn(HK) density
functional,FHK

l fr0,N
v,lg, defined only for ground-state densities

[1,11,12].
In Refs. [10–13,59], the analytical properties of the den-

sity and the external potential used in DFT are carefully
evaluated. We will assume the same analytical behavior as in

Refs.[10–13,59] and will not go into a detailed consideration
of the possible analytical subtleties involved, except to say
the following.

For the densityrsrd, we will assume that it belongs to the
Banach spaceY;L3ùL1 and, of course, it should be non-
negative. More precisely, we require that the density belongs
to J;hrsrd ursrdù0,rsrdPL1, and =ÎrsrdPL2j, which is
a convex subset ofY [11,12]: J,Y. For the external poten-
tial vsrd, we will assume that it belongs to the dual space of
Y, which again is a Banach spaceY* ;L3/2+L`. This means
that any external potential could always be partitioned into
two parts:vsrd=v3/2srd+v`srd, where the first part belongs to
L3/2 and the second part belongs toL`. Lb is a Banach space
with a norm ifib=kufsrdubl1/b,`. Here, L` is the Banach
space of bounded functions, with the normifi`

=ess supufsrdu,`, where the essential supremum is the
smallest upper bound ofufsrdu almost everywhere[60]. In
particular, ground-state densities of some external potentials
in Y* are everywhere positive due to the unique continuation
theorem[11,61].

III. ZERO-TEMPERATURE FOCK-SPACE DFT

In the case of a fractional number of electrons3—say, n
P fN,N+1d—we take the zero-temperature limit of Mer-
min’s finite-temperature DFT[4,17] and define the universal
density functional as4

3Throughout this entire paper, uppercase italic Roman characters
(e.g., N and M) will be used exclusively to represent any non-
negative integers, while lowercase italic Roman characters(e.g.,n
and m) will be employed to freely denote either fractions or inte-
gers. In addition,n andN have the generic relationship:nP fN,N
+1d, unless otherwise noted.

4The equivalency between these two definitions will be proved in
the lemma in Sec. V.
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Flfrng = inf
sN+1−ndD̂N+sn−NdD̂N+1→rn

hsN + 1 −ndFlfD̂Ng + sn − NdFlfD̂N+1gj

= inf
sN+1−ndrN+sn−NdrN+1=rn

hsN + 1 −ndFlfrNg + sn − NdFlfrN+1gj , s17d

whereD̂N→rN,D̂N+1→rN+1, and

D̂n = sN + 1 −ndD̂N + sn − NdD̂N+1 → sN + 1 −ndrN + sn − NdrN+1 = rn, s18d

respectively.
In general, one should defineFlfrng in Fock spaceF f [56]

with all possible linear combinations of density matrices
hD̂NuNPNj built from antisymmetric wave functions in fer-
mionic Hilbert spaces of an arbitrary integral number of par-
ticles hHNuNPNj. However, using the same arguments pre-
sented by Parr and Yang[7], one can readily show that the
infimum of convex sums of all possible Hilbert-space univer-
sal density functionalshFlfrNg uNPNj [similar to the right-
hand side(RHS) of Eq. (17)] will only single out the linear
combinations of those density matrices constructed from
wave functions in the two adjacent Hilbert spacesHN and
HN+1 for nP fN,N+1d. In the end, the definition ofFlfrng in
Eq. (17) is fully equivalent to the more general grand canoni-
cal ensemble formulation[5–7,17,18] and the zero-
temperature limit of Mermin’s finite-temperature DFT
[4,17,18]. Hence, we use “zero-temperature Fock-space

DFT” interchangeably for any of the above-mentioned three
formulations.

In the following, we prove two Hohenberg-Kohn-like
theorems within zero-temperature Fock-space DFT.

Theorem 1.For a fixed arbitrary electron-electron interac-
tion strengthl, there is a mapping between an ensemble
v-representable densityr0,n

v,lsrd and its external potential:

r0,n
v,lsrd = sN + 1 −ndr0,N

v,l + sn − Ndr0,N+1
v,l ° fvg, s19d

wherefvg is the class of the external potentialvsrd up to a
real constanthusrd uusrd=vsrd+C, andCPRj. Moreover,
this mapping is continuous with respect to the electron num-
ber n.

Proof. First of all, the variational principle in Hilbert
space forN and sN+1d electrons dictates

min
D̂n=sN+1−ndD̂N+sn−NdD̂N+1→r0,n

v,l
hsN + 1 −ndFlfD̂Ng + sn − NdFlfD̂N+1gj + Vne

v fr0,n
v,lg

= hsN + 1 −ndFlfD̂0,N
v,lg + sn − NdFlfD̂0,N+1

v,l gj + Vne
v fr0,n

v,lg = E0,n
v,l, s20d

where the minimal energyE0,n
v,l is achieved at an ensemble

v-representable density matrixD̂0,n
v,l=sN+1−ndD̂0,N

v,l +sn
−NdD̂0,N+1

v,l , such that bothD̂0,N
v,l and D̂0,N+1

v,l are ground-state
density matrices of some external potentialvsrd with N and
sN+1d electrons, respectively. The corresponding ensemble
v-representable density is denoted byr0,n

v,l=sN+1−ndr0,N
v,l

+sn−Ndr0,N+1
v,l . There could not be any other alternative so-

lutions and the energy cannot get any lower as it would con-

tradict the minimality ofD̂0,N
v,l for N electrons and ofD̂0,N+1

v,l

for sN+1d electrons. Equation(20) defines the mapping of
the given ensemblev-representable densityr0,n

v,lsrd to its

ground-state density matrixD̂0,n
v,l:

r0,n
v,lsrd ° D̂0,n

v,l. s21d

The next step[49] is to take either of the occupied com-

ponents ofD̂0,n
v,l—say, theN-electron componentD̂0,N

v,l—and
invert the Schrödinger equation,5

o
i=1

N

vsr id − E0,N
v,l = −

sT̂ + lV̂eedD̂0,N
v,l

D̂0,N
v,l

, s22d

then equatesN−1d of the independent variables to some con-
stants, but such that the potential at these values is
nonsingular—say,r i =r0i si =1,2,… ,N−1d—and denote the
one remaining independent variable asr =rN. The left-hand
side(LHS) of Eq. (22) becomeshvsrd+CuCPRj, thus yield-
ing the mapping

5One can also take theoccupied sN+1d-electron component

D̂0,N+1
v,l of D̂0,n

v,l and reach the same conclusion.

F. E. ZAHARIEV AND Y. A. WANG PHYSICAL REVIEW A 70, 042503(2004)

042503-4



D̂0,n
v,l ° fvg. s23d

The combination of mappings in Eqs.(21) and (23) con-
structs the mapping in Theorem 1. Further, the continuity of
Eq. (19) in electron numbern can be confirmed from the
explicit construction, Eqs.(20) and(22), of the two constitu-
ent mappings in Eqs.(21) and (23). j

Comment.The canonical representative of the class offvg
is simply vsrd−vs`d, where the arbitrary additive constant,
vs`d=lim inf r→`uvsrdu, is removed, and the continuous map-
ping becomes unique:

r0,n
v,lsrd ° hvsrdjcan= vsrd − vs`d P fvg. s24d

It is clear that adopting the canonical representativehvsrdjcan

has the similar effect as employing the usual zero-value con-
vention forvsrd at infinity, vs`d=0. j

Theorem 1 guarantees that the classfvg of the external
potential can be recovered from the Fock-space ensemble
v-representable densityr0,n

v,lsrd, one can then use its ground-
state energyE0,n

v,l to alternatively define the Fock-space uni-
versal density functional in Eq.(17) as the fully equivalent
Legendre transform functional in analogy with the traditional
Hilbert-space DFT[1,2,11,12] approach,

Flfrng = sup
v

hE0,n
v,l − Vne

v frngj , s25d

where the supremum will become a maximum for a ground-
state densityr0,n

v,lsrd:

Flfr0,n
v,lg = FHK

l fr0,n
v,lg = max

u
hE0,n

u,l − Vne
u fr0,n

v,lgj

= E0,n
v,l − Vne

v fr0,n
v,lg. s26d

Theorem 2. The variational nature of sFHK
l fr0,n

u,lg
+Vne

v fr0,n
u,lgd is

FHK
l fr0,n

u,lg + Vne
v fr0,n

u,lg ù E0,n
v,l = FHK

l fr0,n
v,lg + Vne

v fr0,n
v,lg,

s27d

where the variation is within the set of ensemble
v-representable densities.r0,n

u,lsrd is the ground-state density
of an external potentialusrd that does not necessarily belong
to fvg and atr0,n

v,lsrd the energy expression achieves the mini-
mum.

Proof. It is almost obvious that the definition in Eq.(26) is
equivalent to the Levy’s constrained search definition in Eq.
(17) restricted to ensemblev-representable densities. Theo-
rem 2 is a direct consequence of the variational principle of

quantum mechanics as shown in Eq.(20). A very important
advantage of the Levy’s constrained search definition of the
universal density functional in Eq.(17) is that it is valid even
if the density is not ensemblev-representable. The varia-
tional principle in this case is

E0,n
v,l = sN + 1 −ndE0,N

v,l + sn − NdE0,N+1
v,l

= min
rn

hFlfrng + Vne
v frngj . s28d

Hence, Theorem 2 naturally follows. j

IV. CONVEXITY OF THE GROUND-STATE ENERGY
IN FOCK SPACE

In the following, consider the ground-state energyE0,n
v,l as

a function of the electron number and denoteE0
v,lsnd;E0,n

v,l

to emphasize the functional dependence on electron number
n.

Convexity assumption.Suppose that for every fixed exter-
nal potentialvsrd, the energyE0

v,lsnd is a convex function
with respect to the number of electrons[7,11,50]:

vAE0
v,lsnAd + vBE0

v,lsnBd ù E0
v,lsnd, s29d

for any non-negativevA,vB,nA,nB, and n, such thatvA
+vB=1 andn=vAnA+vBnB. j

Definition.Define lower and upper derivatives ofE0
v,lsnd:

DL
v,lsnd = lim

j→0−

E0
v,lsn + jd − E0

v,lsnd
j

s30d

and

DU
v,lsnd = lim

j→0+

E0
v,lsn + jd − E0

v,lsnd
j

, s31d

respectively. For convex functions[59,62–64],

DL
v,lsnd ø DU

v,lsnd, s32d

where the equality means the differentiability atn. j

V. GÂTEAUX FUNCTIONAL DERIVATIVE OF THE
UNIVERSAL DENSITY FUNCTIONAL IN FOCK SPACE

Lemma. Flfrng is a convex functional in the following
sense. For any non-negative weightsvp, vq, vs, and vt
such that vp+vq=vs+vt=1 and for any densities
rpsrd , rqsrd , rssrd , rtsrd, and rnsrd such that vprpsrd
+vqrqsrd=vsrssrd+vtrtsrd=rnsrd,

vpF
lfrpg + vqF

lfrqg ù Flfrng = inf
vsrs+vtrt=rn

hvsF
lfrsg + vtF

lfrtgj . s33d

The densitiesrpsrd ,rqsrd ,rssrd ,rtsrd, and rnsrd are normalized to some numbers betweenN and sN+1d—i.e., hp,q,s,t ,n
=vpp+vqq=vss+vttjP fN,N+1d.

Proof. Using the first definition ofFlfrng in Eq. (17), one has
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Flfrng = inf
D̂n=sN+1−ndD̂N+sn−NdD̂N+1→rn

hsN + 1 −ndFlfD̂Ng + sn − NdFlfD̂N+1gj s34d

and the LHS of Eq.(33) is

vpF
lfrpg + vqF

lfrqg = vp inf
D̂p=sN+1−pdD̂p,N+sp−NdD̂p,N+1→rp

hsN + 1 − pdFlfD̂p,Ng + sp − NdFlfD̂p,N+1gj

+ vq inf
D̂q=sN+1−qdD̂q,N+sq−NdD̂q,N+1→rq

hsN + 1 −qdFlfD̂q,Ng + sq − NdFlfD̂q,N+1gj

= inf
D̂=sN+1−ndD̂N+sn−NdD̂N+1→rn

hD̂n=vpD̂p+vqD̂q:D̂p→rp,D̂q→rqj

hsN + 1 −ndFlfD̂Ng + sn − NdFlfD̂N+1gj , s35d

where, in the last step, one writes

pvpD̂p,M + qvqD̂q,M = nD̂M , s36d

whereM is eitherN or N+1. The inequality of Eq.(33) is
due to the additional constraints in the curly brackets of Eq.
(35).

On the other hand, if these additional constraints are re-
leased, Eq.(35) becomes a search for the infimum through
the entire space of different partitions of the same density via
hvsrssrd+vtrtsrd=rnsrd urnsrd;vprpsrd+vqrqsrdj. As a re-
sult, the first definition ofFlfrng in Eq. (17) will be identical
to the infimum of the LHS of Eq.(33), which establishes the
equality of Eq.(33). In other words, the equivalency between
the two definitions ofFlfrng in Eq. (17) is a special case of
Eq. (33). j

Comment.Lieb, Valone, and van Leeuwen have discussed
the convexity of the universal density functional in Hilbert
space[6,11,12]. We not only extend their results to an arbi-
trary number of electrons, but also show the full equivalency
between the two definitions ofFlfrng in Eq. (17), which is
nontrivial in its own right. Furthermore, using the second

definition ofFlfrng in Eq. (17) and following Lieb’s and van
Leeuwen’s arguments[11,12], one can readily prove the full
equivalency between the definitions ofFlfrng via Levy’s
constrained search in Eq.(17) and the Legendre transforma-
tion in Eq. (25). j

Theorem 3.Take an ensemblev-representable density
r0,n

v,lsrd. Suppose]E0
v,lskd /]kuk=n exists. Then,Flfrg has a

unique continuous tangential functional atr0,n
v,lsrd given by

Lr0,n
v,lfrng =KFU ] E0

v,lskd
] k

U
k=n

− vsrdGrnsrdL; s37d

i.e., Lr0,n
v,lfrg is the unique linear functional such that the in-

equality,

Flfrmg − Flfr0,n
v,lg ù Lr0,n

v,lfrm − r0,n
v,lg s38d

holds true for an arbitrary densityrmsrd with a normalization
krmsrdl=m.

Proof. E0,n
v,l is assumed to be convex in the convexity as-

sumption and it is now assumed to be differentiable atk=n;
then,

E0
v,lsmd − E0

v,lsnd ù sm− ndU ] E0
v,lskd
] k

U
k=n

= krmsrd − r0,n
v,lsrdlU ] E0

v,lskd
] k

U
k=n

s39d

for any m and an arbitrary densityrmsrd with krmsrdl=m. ExpandingE0
v,lsmd andE0

v,lsnd, one further rewrites the above as

sFlfr0,m
v,l g + Vne

v fr0,m
v,l gd − sFlfr0,n

v,lg + Vne
v fr0,n

v,lgd ù krmsrd − r0,n
v,lsrdlU ] E0

v,lskd
] k

U
k=n

. s40d

At the same time, for an arbitrary densityrmsrd with krmsrdl=m,

Flfrmg + Vne
v frmg ù Flfr0,m

v,l g + Vne
v fr0,m

v,l g, s41d

due to the DFT variational principle. Substituting Eq.(41) into the LHS of Eq.(40) and moving the nuclear-electron attraction
energy density functionals to the RHS, one has
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Flfrmg − Flfr0,n
v,lg ù krmsrd − r0,n

v,lsrdlU ] E0
v,lskd
] k

U
k=n

− sVne
v frmg − Vne

v fr0,n
v,lgd

= krmsrd − r0,n
v,lsrdlU ] E0

v,lskd
] k

U
k=n

− kvsrdfrmsrd − r0,n
v,lsrdgl . s42d

The existence ofLr0,n
v,lfrg is proved by combining the two terms of the RHS of Eq.(42) into one:

Flfrmg − Flfr0,n
v,lg ù KFU ] E0

v,lskd
] k

U
k=n

− vsrdGfrmsrd − r0,n
v,lsrdgL = Lr0,n

v,lfrm − r0,n
v,lg, s43d

which is in the continuous bilinear formkfsrd%srdl for fsrd
PY* and%srdPY, based on the Riesz’s representation theo-
rem [59,62].

The uniqueness ofLr0,n
v,lfrng has the following origin via

reductio ad absurdum. Without losing generality, let us sup-
pose that for the samer0,n

v,lsrd, there is another continuous
linear tangential functional via the Riesz’s representation
theorem[59,62]:

Lfrm − r0,n
v,lg = kfCv,lsnd − usrdgfrmsrd − r0,n

v,lsrdgl , s44d

whereusrdPY* ,usrd¹ fvg, and bothCv,lsnd and usrd func-
tionally depend onr0,n

v,lsrd. Given the ground-state density
r0,n

u,lsrd of usrd, from the variational principle, we have

Flfr0,n
u,lg + Vne

u fr0,n
u,lg , Flfr0,n

v,lg + Vne
u fr0,n

v,lg s45d

or

Flfr0,n
u,lg − Flfr0,n

v,lg , − sVne
u fr0,n

u,lg − Vne
u fr0,n

v,lgd = kfCv,lsnd − usrdgfr0,n
u,lsrd − r0,n

v,lsrdgl . s46d

The appearance ofCv,lsnd on the RHS of Eq.(46) stems
from the possible additive constant in the external potential
usrd: one can add or subtract a constant tousrd without
changing the inequality in Eq.(45). Clearly, Eq.(46) is in
contradiction with Eq.(43) for m=n. So we know thatusrd
P fvg.

Since the external potentialvsrd is determined by the den-
sity r0,n

v,lsrd only up to a constant—say,g—one then has

E0
v+g,lsnd = Flfr0,n

v,lg + Vne
v fr0,n

v,lg + n 3 g = E0
v,lsnd + n 3 g,

s47d

so

E0
v+g,lsmd − E0

v+g,lsnd
m− n

=
E0

v,lsmd − E0
v,lsnd

m− n
+ g. s48d

Further, taking the limitm→n on both sides, one has

U ] E0
v+g,lskd
] k

U
k=n

= U ] E0
v,lskd
] k

U
k=n

+ g. s49d

Hence, in the final expression the constantg cancels out6:

U ] E0
v+g,lskd
] k

U
k=n

− fvsrd + gg = U ] E0
v,lskd
] k

U
k=n

− vsrd,

s50d

which means thatLr0,n
v,lfrg is uniquely determined by the den-

sity r0,n
v,lsrd. j

Comment.Similarly to the Hilbert-space case[10–12],
here too it can be proved that under the assumption of Theo-
rem 3, the tangential functionalLrn

frg exists if and only if
the densityrnsrd is ensemblev-representable. j

Corollary 1. Under the assumptions of Theorem 3, the
Gâteaux functional derivative or the integral kernel of the
Gâteaux functional differential ofFlfrng at rnsrd=r0,n

v,lsrd is
given by

UdFlfrg
drsrd

U
r=r0,n

v,l
= U ] E0

v,lskd
] k

U
k=n

− vsrd. s51d

Proof. The convexity ofFlfrg in Fock space has been
proved in the lemma. Since in Hilbert spaceFlfrNg is lower
semicontinuous[10–12], Flfrng defined through linear com-
binations ofFlfrNg and FlfrN+1g in Eq. (17) will also be
lower semicontinuous(being proved as corollary 1a in the
Appendix). For lower semicontinuous convex functionals, it
is known that the integral kernel of the tangential functional
differential [see Eq.(37)] and the integral kernel of the Gâ-
teaux functional differential coincide whenever one of them

6Consequently, it is meaningful to adopt the canonical representa-
tive hvsrdjcan for vsrd hereafter. If necessary, we will drop the sub-
script hcanj for notational simplicity.
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exists and is unique[12,63]. j
Comment. For a fractional electron number

n¹N ,]E0
v,lskd /]kuk=n exists and takes unique values forn

between any two adjacent integers[7,17,57]:

mSM
n =U ] E0

v,lskd
] k

U
k=n

=HDL
v,lsNd = − I : n P sN − 1,Nd,

DU
v,lsNd = − A : n P sN,N + 1d,

J
s52d

where I and A are the first ionization potential and the first
electron affinity, respectively. In statistical mechanics[65],
]E0

v,lskd /]kuk=n is called the chemical potentialmSM
n . j

Theorem 4.Assume everything from Theorem 3 but
E0

v,lskd being nondifferentiable at the pointk=n, with a lower
derivative DL

v,lsnd and an upper derivativeDU
v,lsnd. In this

case, the tangential functional ofFlfrng at the densityr0,n
v,lsrd

is not uniquely defined, with an intrinsic arbitrariness speci-
fied below:

Flfrmg − Flfr0,n
v,lg ù kfCv,lsnd − vsrdgfrmsrd − r0,n

v,lsrdgl
s53d

holds if and only if

DL
v,lsnd ø Cv,lsnd ø DU

v,lsnd. s54d

Proof. From Eq.(32) and the factE0
v,lskd is nondifferen-

tiable atk=n, we obtain a strict inequality between the lower
and upper derivatives:

DL
v,lsnd , DU

v,lsnd. s55d

First consider a variation of the density lowering the num-
ber of electrons fromn to m:

krmsrd − r0,n
v,lsrdl = m− n , 0. s56d

From the definition of the lower derivativeDL
v,l in Eq. (30)

and the convexity assumption forE0
v,lsnd, it follows that

E0
v,lsmd − E0

v,lsnd ù sm− ndDL
v,lsnd. s57d

Hence, using the same reasoning that leads from Eq.(39) to
Eq. (43), one has

Flfrmg − Flfr0,n
v,lg ù − kvsrdfrmsrd − r0,n

v,lsrdgl + sm− ndDL
v,lsnd. s58d

For the case ofmùn, one can similarly derive

krmsrd − r0,n
v,lsrdl = m− n ù 0, s59d

E0
v,lsmd − E0

v,lsnd ù sm− ndDU
v,lsnd, s60d

and

Flfrmg − Flfr0,n
v,lg ù − kvsrdfrmsrd − r0,n

v,lsrdgl + sm− ndDU
v,lsnd. s61d

Equations(58) and (61) indicate that if DL
v,lsndøCv,lsnd

øDU
v,lsnd, Eq. (53) will be true for arbitrary values ofm.

Second(theonly if part), if any other values ofCv,lsnd are
chosen, Eq.(53) will be violated as shown below. For ex-
ample, we takeCv,lsnd,DL

v,lsnd. Due to the convexity as-
sumption forE0

v,lsnd,

E0
v,lsmd − E0

v,lsnd
m− n

. Cv,lsnd s62d

and

Flfr0,m
v,l g − Flfr0,n

v,lg , kfCv,lsnd − vsrdgfr0,m
v,l srd − r0,n

v,lsrdgl
s63d

are true forn.m.mL, wheremL is the lower bound ofm
satisfying Eq.(62). Clearly, Eq.(63) contradicts Eq.(53).
Likewise, we can obtain the same contradiction if
Cv,lsnd.DU

v,lsnd, for mU.m.n, where mU is the upper
bound ofm satisfying Eq.(62).

Geometrically, Eq.(54) describes any tangential line be-
low the energyE0

v,lsmd curve, while Eq.(62) signifies the
portion of the energyE0

v,lsmd curve below a straight line
passing through the pointE0

v,lsnd with a slope ofCv,lsnd. j

Corollary 2. Under the assumptions of Theorem 4, the
Gâteaux functional derivative ofFlfrng at rnsrd=r0,n

v,lsrd is
not uniquely defined, with an intrinsic arbitrariness specified
below:

UdFlfrg
drsrd

U
r=r0,n

v,l
= Cv,lsnd − vsrd, s64d

with a range of possible choices ofCv,lsnd characterized by

DL
v,lsnd ø Cv,lsnd ø DU

v,lsnd. s65d

Proof. The same as of Corollary 1. j
Comment.For any integer electron numberN [7,17,57],

DL
v,lsNd = − I , − A = DU

v,lsNd. s66d

For later convenience,Cv,lsNd can be rewritten as
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Cv,lsNd = mSM
N =U ] E0

v,lskd
] k

U
k=N

, s67d

of course, with the intrinsic arbitrariness

− I ø mSM
N ø − A. s68d

j
Theorem 5. For an arbitrary electron numbern

(either fractional or integral), dFlfrg /drsrdur=r0,n
v,l is classwise

continuous with respect to n: dFlfrg /drsrdur=r0,n
v,l

and dFlfrg /drsrdur=r0,N
v,l belong to the same class

f−vsrdg.

Proof. Corollaries 1 and 2 prove Theorem 5. j

VI. “TEMPERATURE REGULARIZATION”
OF THE FUNCTIONAL DERIVATIVE

AT AN INTEGER NUMBER OF ELECTRONS

In view of the above nonuniqueness, one could be
tempted to apply a “temperature regularization” of the type

suggested by Perdewet al. [17], whose idea goes back to the
earlier work by Gyftopoulos and Hatsopoulos[57] (see also
Ref. [7], p. 75). The idea is calculating the functional deriva-
tive after first promoting the system to some finite low tem-
perature and subsequently taking the zero-temperature limit7:

HUdFlfrg
drsrd

U
r=r0,N

v,lJ
reg

= lim
b→`

HUdFlfrg
drsrd

U
r=r0,N

v,lJ
b

. s69d

The result is suggested to be well behaved and expressed as
an average of the following two well-defined functional de-
rivatives. From Eqs.(30), (31), and(52), the lower and upper
functional derivatives of Flfrg can be introduced as
[7,17,57]

UdFlfrg
drsrd

U
r=r0,N

v,l

L

= lim
j→0−

UFlfrg
drsrd

U
r=r0,N+j

v,l
= DL

v,lsNd − vsrd = − I − vsrd s70d

and

UdFlfrg
drsrd

U
r=r0,N

v,l

U

= lim
j→0+

UFlfrg
drsrd

U
r=r0,N+j

v,l
= DU

v,lsNd − vsrd = − A − vsrd, s71d

respectively. The “thermally regularized” functional derivative is stated to be[17]

HUdFlfrg
drsrd

U
r=r0,N

v,lJ
reg

=
1

2SUdFlfrg
drsrd

U
r=r0,N

v,l

L

+ UdFlfrg
drsrd

U
r=r0,N

v,l

U D . s72d

This approach to uniquely define the functional derivative
at an integer number of electrons is based on the belief that
in the zero-temperature limit the chemical potential8, defined
as a derivative of the energy with respect to the electron
numbers at a constant entropy[65], would be well defined
and equal to the negative of Mulliken’s electronegativity
[57,58]:

m = − x = −
I + A

2
. s73d

In contrast, we will show below the ambiguous nature of
this “temperature regularization.” More precisely, we will

show that any value within the intervalf−I ,−Ag, not only
−1

2sI +Ad, can be reached as a value of the chemical potential
in the zero-temperature limit.

For our analysis we will use the same three-state model
considered before[7,17,57]. In this model system, there are
three families of states that are likely to be occupied: a neu-
tral atom withN electrons, energy levelshEkj, and degenera-
cieshgkj; its positive ion withsN−1d electrons, energy levels
hEj

+j, corresponding ionization potentialshI jj from E0, and
degeneracieshgj

+j; and its negative ion withsN+1d electrons,
energy levelshEi

−j, corresponding electron affinitieshAij
from E0, and degeneracieshgi

−j. In Ref. [7], only the ground
states are considered; here, we include excited states as well
for generality. With this in mind, the average number of elec-
trons is easily derived from the grand canonical partition
function of the system:

7Hereafter, we will use the inverse temperatureb=skBTd−1, where
kB is the Boltzmann constant.

8For simplicity of the derivation in this section, the subscript and
superscript of the notation for the chemical potential are dropped.
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N̄sb,md = N +
oi

gi
−ebsAi+md − o j

gj
+e−bsI j+md

ok
gke

−bsEk−E0d + oi
gi

−ebsAi+md + o j
gj

+e−bsI j+md
. s74d

Instead of assuming that the average number of electrons and the chemical potential stay fixed while the temperature
changes[7,17,57], we adopt a more general and physically more plausible assumption that the average number of electrons

N̄sbd as a function of the temperature can vary but will approachN in the zero-temperature limit:

lim
b→`

N̄sbd = lim
b→`
HN +

oi
gi

−ebfAi+msbdg − o j
gj

+e−bfI j+msbdg

ok
gke

−bsEk−E0d + oi
gi

−ebfAi+msbdg + o j
gj

+e−bfI j+msbdgJ = N, s75d

where the chemical potentialmsbd naturally becomes a function of temperature itself[65]. As a result, the desire to have a
fixed number of electrons at an extremely low temperature[7,17,57],

N̄sbd = N, s76d

is indeed just a special case of our generalization.
In general, the chemical potentialmsbd can vary as a function of the temperature[65]. To every temperature dependence of

the chemical potentialmsbd, there is a corresponding temperature dependence of the average electron number given by the
insertion of this functional formmsbd into the RHS of Eq.(74). We are interested in those functional forms ofmsbd that satisfy
Eq. (75).

Case A.Any choice of a function(can be an arbitrary constant) for the chemical potential within the ranges−I ,−Ad satisfies
Eq. (75) since

lim
b→`
H oi

gi
−ebfAi+msbdg − o j

gj
+e−bfI j+msbdg

ok
gke

−bsEk−E0d + oi
gi

−ebfAi+msbdg + o j
gj

+e−bfI j+msbdgJ = 0. s77d

To derive the above result, note that −I ,msbd,−A,A
+msbd,0, andI +msbd.0 by assumption and, at the same
time, Ai ,A0=A andI j . I0= I, due to the order of the energy
levels; hence,Ai +msbd,0 andI j +msbd.0.

Case B.For the case ofm=−I at the zero-temperature
limit, the two functional formsmsbd=−I +ln−1b andmsbd=
−I +b−1/2 provide two possible solutions. One can easily
verify that Eq.(75) and

lim
b→`

msbd = − I s78d

are concurrently satisfied for both functional forms consid-
ered here. In fact, there are infinite solutions of this kind.
Any temperature dependence of the typemsbd=−I + unsbdu,
where nsbd has the limiting properties limb→`nsbd
=limb→`fbnsbdg−1=0, provides a possible solution formsbd
with −I in the zero-temperature limit.

Case C.Similarly to Case B, any temperature dependence
of the chemical potential of the typemsbd=−A− unsbdu will
result in

lim
b→`

msbd = − A, s79d

when Eq.(75) is also satisfied.
In conclusion, any values between −I and −A for the

chemical potential,

− I ø m ø − A, s80d

are acceptable, provided that Eq.(75) is simultaneously
obeyed. Equation(80) is consistent with Eq.(68). Hence, the
“temperature regularization”[7,17,57] does not remove the
intrinsic arbitrariness for the chemical potential at an integer
electron numberN.

To further illustrate our arguments succinctly, we have
exhibited in Fig. 1 five cases of different temperature-
dependent chemical potentialsmsbd and their pertinent

temperature-dependent average electron numbersN̄sb ,md,
for a model system withI =1.0 hartree,A=0.1 hartree, and
N=5. Figure 1 clearly shows that the average electron num-
bers in these cases with very different functional behaviors
for msbd all go to the same fixed number in the zero-

temperature limit, namely, limb→`N̄sb ,md=N, but with var-
ied zero-temperature-limit values for the chemical potential
between −I and −A: − I ø limb→`msbdø−A.

VII. FOCK-SPACE KOHN-SHAM METHOD
AND “DERIVATIVE DISCONTINUITY”

For consistency of the notation, let us recall the idea of
the Kohn-Sham(KS) system[3,7–9,12,17,25]. At the nonin-
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teracting limit sl=0d, the original external potential9vsrd is
replaced with an effective potentialveff

KSfr0,ngsrd in a way to
keep the ground-state density identical to the one in the fully
interacting limit—namely,

r0,n
v,l=1srd = r0,n

veff
KS,l=0srd = r0,nsrd, s81d

where the common densityr0,nsrd is denoted by simply omit-
ting the l dependence. Also denoteFfrng=Fl=1frng and
TSfrng=Fl=0frng, because in the KS limit the universal den-
sity functional from Eq.(9) reduces to a pure kinetic form.

The first thing to note is that the specialization to the
noninteracting case of the convexity property in Eq.(33)
becomes

vpTSfrpg + vqTSfrqg ù TSfrng, s82d

using the same assumption forvp,vq,rpsrd ,rqsrd, andrnsrd
as in the lemma. It is a property against which any approxi-
mations toTSfrng shall be tested.

Case 1.In the following first considernP sN−1,Nd.
Our previous discussion in Eq.(70) was for an arbitrary

electron-electron interaction strengthl between 0 and 1, so
the functional derivatives for the two limiting cases ofl=1
andl=0 are

UdFfrg
drsrd

U
r=r0,n

= E0
v,l=1sNd − E0

v,l=1sN − 1d − vsrd

= − I − vsrd s83d

and

UdTSfrg
drsrd

U
r=r0,n

= E0
veff

KS,l=0sNd − E0
veff

KS,l=0sN − 1d − veff
KSfr0,ngsrd

= eN
n − veff

KSfr0,ngsrd, s84d

where the last equality is due toE0
veff

KS,l=0sMd=oi=1
M ei

n (for
positive integerM), andhei

nj are the KS orbital energies.
Recall the KS partition of the universal density functional

[3,7–9,12,17,25]

Excfrng = Ffrng − TSfrng −
1

2K rnsrdrnsr8d
ur − r8u L , s85d

from which one arrives at

9The general KS scheme is not limited to Coulombic external
potentials only[12]. The soundness of the KS scheme has been
firmly established by van Leeuwen recently[12]. In this section, we
will mainly concentrate on those external potentials that converge to
the same arbitrary constant at infinity in all directions, which of
course, will produce asymptotically exponential-decaying densities
for bound ground states[43,66,67]. For later convenience, we will
label the set of these “good” external potentials asV and the set of
their corresponding asymptotically exponential-decaying ground-
state densities asD.

FIG. 1. Comparison of five different temperature-dependent average electron numbersN̄sb ,md, corresponding to different temperature-
dependent chemical potentialsmsbd, as functions of the inverse temperatureb, for a model system withI =1.0, A=0.1, andN=5, respec-
tively. All values are in atomic units. The dotted line is formsbd=−0.2 and the degeneracy parametershg0,g0

−,g0
+j=h1,1,1j. The solid line

is for msbd=−I +b−1/2 andhg0,g0
−,g0

+j=h3,2,3j. The dot-dashed line is formsbd=−A−ln−1b andhg0,g0
−,g0

+j=h3,2,3j. The short-dashed line
is for msbd=−sI +Ad /2+sb lnbd−1 and hg0,g0

−,g0
+j=h3,2,3j. The long-dashed line is formsbd=−sI +Ad /2 andhg0,g0

−,g0
+j=h3,2,3j.
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UdExcfrg
drsrd

U
r=r0,n

= UdFfrg
drsrd

U
r=r0,n

− UdTSfrg
drsrd

U
r=r0,n

−E r0,nsr8d
ur − r8u

dr8 s86d

=veff
KSfr0,ngsrd − vsrd −E r0,nsr8d

ur − r8u
dr8 − eN

n − I = vxc
n srd − eN

n − I , s87d

where we associatevxc
n srd by a grouping of the following

terms[3,7–9,12,17,25]:

vxc
n srd = veff

KSfr0,ngsrd − vsrd −E r0,nsr8d
ur − r8u

dr8. s88d

Equation(87) should be interpreted as an actual equality of
two previously defined terms rather than as a definition of
vxc

n srd. Naturally, for exponentially decayingr0,nsrd,

lim
r→`

E r0,nsr8d
ur − r8u

dr8 = 0. s89d

On the one hand, forl=1, one has

r0,n = r0,n
v,l=1 = sN − ndr0,N

v,l=1 + sn − N + 1dr0,N−1
v,l=1, s90d

with the asymptotic limit[43,66,67]

lim
r→`

r0,n = lim
r→`

r0,n
v,l=1 , lim

r→`
r0,N

v,l=1 , e−2rÎ2I . s91d

On the other hand, forl=0, one also has

r0,n = r0,n
veff

KS,l=0 = sN − ndr0,N
veff

KS,l=0 + sn − N + 1dr0,N−1
veff

KS,l=0,

s92d

with the asymptotic limit[43,66,67]

lim
r→`

r0,n = lim
r→`

r0,n
veff

KS,l=0 , lim
r→`

r0,N
veff

KS,l=0 , e−2rÎ2fvxc
n s`d−eN

n g,

s93d

where the usual zero-value(canonical) convention forvsrd at
infinity,

lim
r→`

vsrd = vs`d = 0, s94d

is used and, consequently,

veff
KSfr0,ngs`d = vxc

n s`d. s95d

From the above considerations and after equating the two
forms of the asymptotic limit ofr0,n, one gets

I = vxc
n s`d − eN

n . s96d

From Eqs.(84) and (87), we finally arrive at

UdTSfrg
drsrd

U
r=r0,n

= − I + veff
KSfr0,ngs`d − veff

KSfr0,ngsrd

= − I − hveff
KSfr0,ngsrdjcan s97d

and

UdExcfrg
drsrd

U
r=r0,n

= vxc
n srd − vxc

n s`d = hvxc
n srdjcan. s98d

Case 2.Similarly for mP sN,N+1d, one will get

A = vxc
ms`d − eN+1

m , s99d

UdFfrg
drsrd

U
r=r0,m

= E0
v,l=1sN + 1d − E0

v,l=1sNd − vsrd

= − A − vsrd, s100d

UdTSfrg
drsrd

U
r=r0,m

= E0
veff

KS,l=0sN + 1d − E0
veff

KS,l=0sNd − veff
KSfr0,mgsrd

= eN+1
m − veff

KSfr0,mgsrd

= − A + veff
KSfr0,mgs`d − veff

KSfr0,mgsrd

= − A − hveff
KSfr0,mgsrdjcan, s101d

and

UdExcfrg
drsrd

U
r=r0,m

= vxc
msrd − vxc

ms`d = hvxc
msrdjcan. s102d

The striking observation of Eqs.(98) and(102) is that for
an arbitraryn, in general,

UdExcfrg
drsrd

U
r=r0,n

Þ vxc
n srd, s103d

in contradiction to existing practice[7–9,12]. Moreover,
from Eqs.(83), (97), (98), (100), (101), and (102), one can
clearly identify the following limits atr →`:

lim
r→`

UdFfrg
drsrd

U
r=r0,n

= lim
r→`

UdTSfrg
drsrd

U
r=r0,n

= − I , s104d

lim
r→`

UdFfrg
drsrd

U
r=r0,m

= lim
r→`

UdTSfrg
drsrd

U
r=r0,m

= − A, s105d

and

lim
r→`

UdExcfrg
drsrd

U
r=r0,n

= lim
r→`

UdExcfrg
drsrd

U
r=r0,m

= 0, s106d

which are true for any values ofnP sN−1,Nd and m
P sN,N+1d.

In order to understand the “derivative discontinuity” of
FfrNg ,TSfrNg, andExcfrNg at an integer electron numberN,
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let us use lower and upper functional derivatives of these
functionals, defined in close analogy to Eqs.(70) and (71),
and take their difference atN:

UdFfrg
drsrd

U
r=r0,N

L

− UdFfrg
drsrd

U
r=r0,N

U

= A − I , s107d

lim
r→`

SUdTSfrg
drsrd

U
r=r0,N

L

− UdTSfrg
drsrd

U
r=r0,N

U D = A − I , s108d

and

lim
r→`

SUdExcfrg
drsrd

U
r=r0,N

L

− UdExcfrg
drsrd

U
r=r0,N

U D = 0. s109d

Clearly, the asymptotic limits of both the lower and upper
functional derivatives of the exchange-correlation functional
confirm the lack of “derivative discontinuity,” due to Eq.
(106). Additionally, at then→N andm→N limits,

lim
j→0±

hveff
KSfr0,N+jgsrdjcan= hveff

KSfr0,Ngsrdjcan, s110d

due to the Hohenberg-Kohn-like theorem in Fock space(see
Theorem 1 and its comment).10 As a result, Eqs.(108) and
(109) are true globally, not only at the asymptotic limit:

UdTSfrg
drsrd

U
r=r0,N

L

− UdTSfrg
drsrd

U
r=r0,N

U

= A − I , s111d

UdExcfrg
drsrd

U
r=r0,N

L

− UdExcfrg
drsrd

U
r=r0,N

U

= 0. s112d

More interestingly, Eqs.(83) and (100) clearly reconfirm
Theorem 5. In the same way, Eqs.(97), (101), and (111)
suggest thatdTSfrg /drsrdur=r0,N

L and dTSfrg /drsrdur=r0,N

U be-
long to the same classf−veff

KSfr0,Ngsrdg; Eqs.(98), (102), and

(112) indicate that dExcfrg /drsrdur=r0,N

L and
dExcfrg /drsrdur=r0,N

U coincide with the canonical representa-
tive of the classfvxc

N srdg. More importantly, according to the
standard continuity requirement, Eq.(112) further ratifies
that the functional derivative of the exchange-correlation
functional is continuous with respect to electron numbern in
Fock space:

UdExcfrg
drsrd

U
r=r0,N

= UdExcfrg
drsrd

U
r=r0,N

L

= UdExcfrg
drsrd

U
r=r0,N

U

= hvxc
N srdjcan. s113d

This result will have a profound consequence in resolving
the value of the chemical potential at an integer electron
number(discussed in the next section).

It should be noticed that Eqs.(107)–(113) are universal
statements for general external potentials inV (including
Coulombic potentials) with bound ground states, simple be-
cause of Theorem 1 and Corollary 1. Equations(107) and
(111)–(113) are our main results regarding the “derivative
discontinuity.” Once again to emphasize, we find that the
exchange-correlation functional does not exhibit a “deriva-
tive discontinuity.”

VIII. VALUE OF THE CHEMICAL POTENTIAL

Due to the intrinsic arbitrariness in Eq.(68), the value of
the chemical potential at an integer electron number is in-
deed a thorny subject[7,12–17,42–48]. In the present litera-
ture, there are at least six different values formSM

N

[7,12–17,42–48].
The first value is the mean total electronic energy

[13,42,46]

mSM
N =

E0
v,lsNd
N

. s114d

This value ofmSM
N might be inferred from observing the iden-

tity in Hilbert space:

kCsr1s1,…,rNsNduĤv,luCsr1s1,…,rNsNdl − E0
v,lsNdfkCsr1s1,…,rNsNduCsr1s1,…,rNsNdl − 1g

; FlfD̂Ng + Vne
v frNg −

E0
v,lsNd
N

fkrNsrdl − Ng ù FlfrNg + Vne
v frNg −

E0
v,lsNd
N

fkrNsrdl − Ng, s115d

whereCsr1s1,… ,rNsNd is any normalizedN-electron anti-
symmetric wave function with densityrNsrd and density ma-

trix D̂N. The LHS and the central expression of Eq.(115) are
the variation functionals employed in the conventional wave
function and density matrix approaches[68]. Subtly, the cen-
tral expression of Eq.(115) looks similar, but not identical,
to the RHS of Eq.(115), which is a special case of the one
used in density-functional theory[7,47]:

Ffrg + Vne
v frg − mDFTfkrsrdl − Ng. s116d

A closer scrutiny shows that the variational domain of the
RHS of Eq. (115) includes infimal normalized wave func-
tions [through rNsrd], while the variational domains of the
LHS and central expression of Eq.(115) only include any
arbitrary normalized wave functions and density matrices
[with rNsrd], respectively. Or in other words, in general,

10An earlier account of this continuity for integer electron num-
bers appeared in Ref.[54].
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FlfD̂Ng ù FlfrNg = inf
D̂N→rN

FlfD̂Ng, s117d

which is a restatement of Eq.(9). Hence, Eq.(114) is gener-
ally incorrect[55] and this understanding is a generalization
of the arguments by Gál[14]. Furthermore, settingl=0 in
Eq. (114), one will get the erroneous first-degree homogene-
ity relation forTSfr0,Ng [41,42]. In fact, one can easily derive
a similar, more general erroneous first-degree homogeneity
relation forFlfr0,Ng [55],

KSUdFlfrg
rsrd

U
r=r0,N

Dr0,NsrdL = Flfr0,Ng, s118d

based upon the general expression in Eq.(114) [13].
The second one is the highest occupied KS orbital energy

eN
N and is identified to be the negative of the first ionization

potential[43]

mSM
N = eN

N = − I , s119d

which is a consequence of assumingveff
KSfr0,Ngsrd to be zero

asymptotically[43,51]:

lim
r→`

veff
KSfr0,Ngsrd = veff

KSfr0,Ngs`d = 0. s120d

This assumption has never been proved to be true in general,
nor is consistent with the so-called “derivative discontinuity”
argument[16–30], which states that asN passes a fixed in-
teger,veff

KSfr0,Ngsrd will exhibit a finite jump. Of course, with
Eq. (120), veff

KSfr0,Ngsrd will definitely not possess any “de-
rivative discontinuity,” but from our discussion in Sec. VII,
such an assumption like Eq.(120) is not proved either, be-
cause of the finite asymptotic valueveff

KSfr0,Ngs`d in Eqs.(95)
and (96). Nonetheless, Eq.(119) is covered within the ac-
ceptable range shown in Eqs.(68) and (80).

The third one is “conveniently” linked to the Lagrangian
multiplier in DFT [14,15,50,52], which can be shown
through the chain rule[14,50,52]

mSM
N = U ] E0

v,lskd
] k

U
k=N

= UK dE0
v,lskd

dr0,k
v,lsrd

] r0,k
v,lsrd
] k

LU
k=N

= mDFTkFsrdl = mDFT, s121d

where the property of the Fukui function[53] Fsrd
=]r0,k

v,lsrd /]kuk=N has been utilized. Obviously, this approach
is basically a Fock-space treatment for bothFsrd and
dE0

v,lskd /dr0,k
v,lsrd.

Built upon the third one, the fourth one is the negative of
Mulliken’s electronegativity[57,58]:

mSM
N = − x = −

I + A

2
, s122d

which can be derived via the grand canonical ensemble near
zero temperature[7,15–17,36,48]. In Sec. VI, we have
shown that Eq.(122) is just a particular choice among infi-
nite possible values betweenf−I ,−Ag.

Same to Eqs.(68) and (80), the fifth one[7,47] is not a
fixed number, but between two limits

− I ø mSM
N ø − A. s123d

Although Eq. (123) covers Eqs.(119), (121), and (122), a
considerable difference still exists between Eqs.(119) and
(122). Except forN=1, Eq.(114) does not satisfy Eq.(123).
This offers another evidence formSM

N ÞE0
v,lsNd /N in general.

The last one is zero[12],

mSM
N = 0, s124d

which is clearly wrong for general multi-electron systems.
Apart from the question of what is the value of the chemi-

cal potential, an important problem stands alone how to ac-
tually define the notion itself within the framework of DFT.
In the usual DFT practice, the chemical potentialmSM

n is
associated with the Lagrangian multipliermDFT, for an arbi-
trary electron numbern (either fractional or integral), similar
to Eq. (121).

As a complement to this, we will show below that within
our approach their equality can be derived alternatively.11

For this purpose and in order to make a connection with the
traditional derivation of the Euler-Lagrange equation in DFT,
we vary the energy expression with the Lagrangian normal-
ization term explicitly included, for an arbitrary electron
numbern (either integral or fractional):

UdFlfrg
drsrd

U
r=r0,n

v,l
+ UdhVne

v frg − mDFTfkrsrdl − ngj
drsrd

U
r=r0,n

v,l
= 0.

s125d

With our expressions of the functional derivative of the uni-
versal density functional in Eqs.(51), (64), and (67), Eq.
(125) thus becomes

SU ] E0
v,lskd
] k

U
k=n

− vsrdD + fvsrd − mDFTg = 0 s126d

or, just simply,

mDFT = U ] E0
v,lskd
] k

U
k=n

= mSM
n , s127d

for an arbitrary electron numbern (either integral or frac-
tional). An important feature of our approach is that the
above equality is derived without any aid from the Fukui
function.

Up to this point, the actual value ofmSM
N remains to be

resolved to draw a satisfactory finale. Let us work with the
KS method for a fixed integer electron numberN with vsrd
PV and r0,NsrdPD. As usual, with the equality(with l=1
andl=0 only)

11Although Parret al. [15] took a similar path as outlined below,
these authorsassumedthe existence of the functional derivative of
Flfrg for Fock-space ensemblev-representable densities, while
working only with Hilbert-space universal density functionals.
Hence, their proof is actually logically inconsistent.
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mSM
N ; U ] E0

v,l=1skd
] k

U
k=N

= mDFT ; UdE0
v,l=1skd

dr0,ksrd
U

k=N

= UdFfrg
drsrd

U
r=r0,N

+ vsrd s128d

and the KS partition of the universal density functional

FfrNg = TSfrNg + ExcfrNg +
1

2K rNsrdrNsr8d
ur − r8u L , s129d

one arrives at

UdFfrg
drsrd

U
r=r0,N

= UdTSfrg
drsrd

U
r=r0,N

+ UdExcfrg
drsrd

U
r=r0,N

+E r0,Nsr8d
ur − r8u

dr8. s130d

For any external potentialvsrdPV, Eqs. (106), (109), and
(113) guarantee that

lim
r→`

UdExcfrg
drsrd

U
r=r0,N

= 0, s131d

and it has been well established[9,43,66,67] that for vsrd
PV, the corresponding ground-state density will be asymp-
totically exponential-decayingr0,NsrdPD, such that

lim
r→`

UdTfrg
drsrd

U
r=r0,N

= lim
r→`

UdTSfrg
drsrd

U
r=r0,N

= − I , s132d

whereTfrg is the exact kinetic-energy density functional, the
kinetic component ofFfrg. With the help of Eq.(89), one
derives the asymptotic behavior

lim
r→`

UdFfrg
drsrd

U
r=r0,N

= − I . s133d

BecausemSM
N is a global constant, one immediately gets

mSM
N = lim

r→`
SUdFfrg

drsrd
U

r=r0,N

+ vsrdD = − I , s134d

from Eqs.(94), (128), and (133). Combining Eqs.(52) and
(134), we finalize the value for the chemical potential for an
arbitrary electron numbern (around an integerN):

mSM
n = U ] E0

v,lskd
] k

U
k=n

=HDL
v,lsNd = − I : n P sN − 1,Ng,

DU
v,lsNd = − A : n P sN,N + 1g.

J
s135d

Moreover, Eq.(135) can be simplified as a single statement
below.

Theorem 6.For an arbitrary electron numbernP sN
−1,Ng with vsrdPV andr0,nsrdPD, the chemical potential
takes the lower derivative(with respect to the electron num-
ber) of the ground-state energy as its value:

mSM
n ;U ] E0

v,lskd
] k

U
k=n

= DL
v,lsnd = DL

v,lsNd = − I , s136d

where N is the nearest integer upper bound ofn. For the
entire range ofsN−1,Ng, the chemical potential is a con-
stant, hence is continuous with respect to the change of elec-
tron number. j

This is to say that the value of the chemical potential is
completely dictated by the asymptotic limit of the functional
derivative of the kinetic-energy density functional[see Eqs.
(104), (105), (132), and (133)], which in turn is governed
solely by the decaying behavior of the least decaying
N-electron ground-state density for ann-electron system[see
Eqs.(91) and(93)], without any interference from theunoc-
cupied sN+1d-electron state. Any other definition formSM

N

not consistent with Eq.(134)—say, the negative of Mullik-
en’s electronegativity in Eq.(122)—will be in direct conflict
with the continuity of the functional derivative of the
exchange-correlation functional with respect to electron
number[see Eq.(113)]. Further, the conclusions of Sec. VII
should be true for the extended domains:nP sN−1,Ng and
mP sN,N+1g. This result is achieved without any reference
whatsoever to the finite asymptotic valueveff

KSfr0,ngs`d in
Eqs.(95) and(96). Hence, it is a general, universal statement
for vsrdPV andr0,nsrdPD.

Here, we conclude our investigation into the functional
derivative of density functionals and related issues.

IX. SUMMARY

The contributions of our paper to the discussion of the
functional derivative in DFT are the following.

(i) It is an old problem but with a renewed interest in
recent years[1–55]. There is a lot of confusion accumulated
over the years and almost no mathematically rigorous studies
except for the papers of Englisch and Englisch[10], Lieb
[11], van Leeuwen[12], Lindgren and Salomonson[13], and
Gál [14]. Our paper is an additional effort to further
strengthen the mathematical foundation of DFT.

(ii ) In order to derive the main results, two Hohenberg-
Kohn-like theorems for cases of fractional electron numbers
are proved.
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(iii ) We prove that within the zero-temperature Fock-
space DFT, the functional derivativedFlfrg /drsrdur=r0,N

v,l

=Cv,lsNd−vsrd is not well defined in the case of an integer
number of electronsfkrsrdl=NPN+g, due to the nonunique-
ness of Cv,lsNd, which can be within an entire interval:
DL

v,lsNdøCv,lsNdøDU
v,lsNd. We further show that the often

cited “temperature regularization”[7,17,57] could not fix the
uncertainty ofCv,lsNd at an integer electron numberN.

(iv) We prove that within the zero-temperature Fock-
space DFT, the functional derivativedFlfrg /drsrdur=r0,n

v,l

=Cv,lsnd−vsrd is well defined asCv,lskd=]E0
v,lskd /]kuk=n, in

the case of a fractional number of electronsfkrsrdl
=n¹N+g.

(v) The above results are proved for an arbitrary electron-
electron interaction strengthl between 0 and 1 and
are later restricted to the casesl=1 and l=0, thus, for
nP sN−1,Ng, giving dFfrg /drsrdur=r0,n

=−I −hvsrdjcan,
dTSfrg /drsrdur=r0,n

=−I −hveff
KSfr0,ngsrdjcan, and

dExcfrg /drsrdur=r0,n
=hvxc

n srdjcan. Surprisingly, the canonical
representatives of the classes of various potential functions
are required to correctly define their corresponding density
functional derivatives.

(vi) The functional derivative of the exchange-correlation
functional is continuous with respect to the number of elec-
trons in Fock space. Consequently, there is no “derivative
discontinuity” for the exchange-correlation functional at an
integer electron number.

(vii ) The equalitymDFT=mSM
n is rigorously derived via an

alternative route.mDFT is the Lagrangian multiplier used to
constrain the normalization of the density, which in the tra-
ditional DFT approach is associated with the chemical poten-
tial, mSM

n =]E0
v,lskd /]kuk=n, defined according to statistical

mechanics.
(viii ) Finally, we show that forvsrdPV, there is no free-

dom of adding an arbitrary constant to the value of the
chemical potential at an integer electron numberN and fur-
ther resolve this intrinsic nonuniqueness by an exact defini-
tion: mSM

N =−I, not the popular preference
[7,15–17,36,48,57,58] of the negative of Mulliken’s elec-
tronegativity, −1

2sI +Ad.
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APPENDIX

Corollary 1a. Flfrng is lower semicontinuous(l.s.c.) at
Fock-space ensemblev-representable densitieshr0,n

v,lsrdj in Y.
Proof. As shown in Eq.(19), any Fock-space ensemble

v-representable densityr0,n
v,lsrd has a unique decomposition

into its two adjacent integerN and sN+1d components:

r0,n
v,lsrd = sN + 1 −ndr0,N

v,lsrd + sn − Ndr0,N+1
v,l srd. sA1d

Take a sequence of densitiesrn
ksrd converging tor0,n

v,lsrd in
Y—i.e., limk→`irn

ksrd−r0,n
v,lsrdi1=0 and limk→`irn

ksrd
−r0,n

v,lsrdi3=0. For the kth element in this converging se-
quencern

ksrd, consider different splits(labeled with a non-
necessarily countable indexa) into N and sN+1d compo-
nents:

rn
ksrd = sN + 1 −ndrN

a,ksrd + sn − NdrN+1
a,k srd, sA2d

such that limk→`ir0,M
a,k srd−r0,M

v,l srdi1=0 and limk→`ir0,M
a,k srd

−r0,M
v,l srdi3=0, whereM is either N or sN+1d. Since it is

known [10–12] that Flfrg is l.s.c. at Hilbert-space ensemble
v-representable densitiesr0,N

v,lsrd and r0,N+1
v,l srd, for each

choice ofa, we have

Flfr0,N
v,lg ø lim inf

k→`
FlfrN

a,kg sA3d

and

Flfr0,N+1
v,l g ø lim inf

k→`
FlfrN+1

a,k g. sA4d

A combination of the above two inequalities with Eq.(17)
gives

Flfr0,n
v,lg = sN + 1 −ndFlfr0,N

v,lg + sn − NdFlfr0,N+1
v,l g

ø lim inf
k→`

hsN + 1 −ndFlfrN
a,kg + sn − NdFlfrN+1

a,k gj .

sA5d

The final step is to observe that the above inequality is pre-
served after taking the infimum over the set of different den-
sity splits haj. Once again, using Eq.(17), we obtain the
desired result

Flfr0,n
v,lg ø lim inf

k→`
Flfrn

kg, sA6d

which says thatFlfrng is l.s.c. at Fock-space ensemble
v-representable densitieshr0,n

v,lsrdj in Y. j
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