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Orbital-free kinetic-energy functionals for the nearly free electron gas

Yan Alexander Wang, Niranjan Govind, and Emily A. Carter
Department of Chemistry and Biochemistry, Box 951569, University of California, Los Angeles, California 90095-1569

~Received 15 June 1998!

We present an improvement over the Wang-Teter, Perrot, and Smargiassi-Madden kinetic-energy function-
als without going beyond linear-response theory and without introducing a density-dependent kernel. The
improved functionals were tested on bulk aluminum, and excellent results were obtained. Accurate density-
functional calculations using the new functionals on systems larger than one can study by traditional Kohn-
Sham methods are demonstrated.@S0163-1829~98!00244-6#
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I. INTRODUCTION

The attractive feature of orbital-free~OF! density-
functional schemes1–7 based on the original Hohenberg
Kohn ~HK! theorem8 is that the computational effort esse
tially scales linearly@O(N)# with system size. TheseO(N)
methods comprise a different group from the orbital-ba
O(N) methods9 constructed on the traditional Kohn-Sha
~KS! scheme.10 They also offer some benefits over these t
ditional KS methods. Being purely density based, no orb
localization, no orthonormalization and no Brillouin-zon
sampling are required, and hence calculations can be d
inexpensively.

However, practical realization of the HK theory8 requires
a full knowledge of all the terms in the total-energy fun
tional. In practice, this has not been possible except for a
model systems~e.g., one-electron systems!, and suitable ap-
proximations have to be made. Over the years, a numbe
high-quality exchange-correlation functionals have been
veloped for all kinds of systems.11 By comparison, much les
has been achieved for the kinetic-energy density functio
~KEDF!.11 Although many KEDF’s are available,1–7,11–14

they lack transferability and cannot be applied with the sa
merits in different scenarios.6 For example, the Thomas
Fermi ~TF! functional,12 on the one hand, is only exact at th
free-electron gas limit, and produces no binding for a
system.11 The von Weizsa¨cker ~vW! functional,13 on the
other hand, is only exact for one- and two-electron grou
state systems, but fails for any many-electron environmen11

The conventional gradient expansion~CGE! ~Ref. 14! about
the uniform gas limit does improve the TF functional, b
diverges after the fourth-order for exponentially decay
densities, and produces algebraically decaying densities
no shell structure for atoms.11,15 Moreover, these models d
not have the correct linear-response~LR! behavior, and
hence do not give rise to Friedel oscillations.16

There are several KEDF’s~Refs. 1–6! with the correct LR
built in. The KEDF’s due to Wang and Teter~WT!,1 Perrot,2

and Smargiassi and Madden~SM! ~Ref. 3! are very accurate
for nearly-free-electron-gas-like systems~e.g., simple bulk
metals!, while more sophisticated ones by Chaco´n and
co-workers5 and Carter and co-workers6 are nearly universal
KEDF’s based on higher-order response theories are
available.1,4 The only drawback with the universal KEDF’
~Refs. 5 and 6! is that they are computationally expensiv
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scaling quadratically with grid size. In this sense, the W
Perrot, and SM KEDF’s are the optimal choices for simp
bulk metals. In this paper, we propose a simple improvem
over the WT, Perrot, and SM KEDF’s in terms of accurac
while maintaining their practical efficiency.

II. BACKGROUND

The WT, Perrot, and SM KEDF’s can be convenien
written as1–4

Ts
a@r#5TTF@r#1TvW@r#1TX

a@r#, ~1!

TTF@r#5^tTF~r !&5 3
10 ~3p2!2/3^r~r !5/3& , ~2!

TvW@r#5^tvW~r !&5
1

8K u¹r~r !u2

r~r ! L , ~3!

TX
a@r#5^Dr~r !auKa~r2r 8!uDr~r 8!a&. ~4!

Here,TTF@r# is the TF functional,TvW@r# is the vW func-
tional, Dr(r )a5r(r )a2r0

a , r0 is the average electron den
sity, a is a positive parameter that define
X5Wang-Teter-Perrot1,2 for a5 5

6 , X5Perrot2 for a51, and
X5SM3,4 for a5 1

2 . The kernelKa(r2r 8) is chosen such
that Ts

a satisfies the exact LR for a noninteracting electr
gas without exchange,

F̂S d2Ts
a@r#

dr2 U
r0

D 52
1

xLind
5

p2

kF
S 1

2
1

12h2

4h
lnU11h

12hU D
21

,

~5!

where kF5(3p2r0)1/3 is the Fermi wave vector,h
5 q/(2kF) is a dimensionless momentum,F̂ denotes the
Fourier transform, andxLind is the Lindhard susceptibility
function in reciprocal space.16,17 In other words,Ka(r2r 8)
can be expressed in reciprocal space as2–4

F̂Ka~r2r 8!5K̃a~q!52
xLind

21 2xvW
212xTF

21

2a2Vr0
2~a21!

, ~6!

whereV is the system volume,xTF52 (kF /p2) is the TF
LR function, andxvW52 @kF/(3p2h2)# is the vW LR func-
tion. One can see from Eqs.~5! and ~6! that
13 465 ©1998 The American Physical Society
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13 466 PRB 58WANG, GOVIND, AND CARTER
K̃a~0!50, ~7!

and consequently,

TX
a@r#5^r~r !auKa~r2r 8!ur~r 8!a&, ~8!

which is in the form of the WT KEDF~Ref. 1! when a
5 5

6 .
It has been shown that3,4 for a uniform system,Ts

a reduces
to TTF ; for slowly varying densities,Ts

1/2 yields the CGE up
to second order (TTF1 1

9 TvW); and for rapidly varying den-
sities,TvW in Ts

a will dominate. Since all the important limits
can be reproduced using this family of KEDF’s, it is n
surprising that they perform so well.3 However, a closer in-
spection shows that for bulk aluminum,Ts

5/6 performs better
than Ts

1/2 for most structures,3 even with the inclusion of
quadratic response.4 At first glance, this seems illogical sinc
Ts

1/2 exactly reduces to the CGE for slowly varying densit
while Ts

5/6 does not,3,4 but the numerical evidence proves th
opposite. Based on these results, one might easily conc
that there must be a defect inTs

1/2, and only useTs
5/6 in

practical calculations. In the following, we will argue th
both Ts

5/6 and Ts
1/2 are partially correct as well as incorrec

and a suitable combination of the two indeed yields excel
results. Furthermore, one can even generate an entire fa
of new functionals in the same spirit.

III. ANALYSIS AND DISCUSSION

To understand both the success and failure of the W
Perrot, and SM KEDF’s,1–4 we reexpress the generalTs

a in
Eq. ~1! in reciprocal space4 using Eqs.~2!–~8!,

Ts
a@r#5V(

q
t̃ s

a~q!5V(
q

$ t̃ TF~q!1 t̃ vW~q!1 t̃ X
a~q!%,

~9!

t̃ X
a~q!52$ t̃ I

a~q!1 t̃ I I
a ~q!1 t̃ I II

a ~q!%, ~10!

t̃ TF~q!5
3kF

2

10r0
2/3

rq
5/6r2q

5/6 , ~11!

t̃ vW~q!5
1

2
rq

1/2q2r2q
1/2 , ~12!

t̃ I
a~q!5

1

2a2r0
2~a21!

rq
a 1

xLind
r2q

a , ~13!

t̃ I I
a ~q!5

kF
2

6a2r0
2a21

rq
ar2q

a , ~14!

t̃ I II
a ~q!5

1

8a2r0
2a21

rq
aq2r2q

a , ~15!

where, in general,t̃ (q) andrq
a are the Fourier transforms o

t(r ) andra(r ), respectively. It can be readily shown16 that
de

nt
ily

,

lim
q→0

1

xLind
52

1

3r0
S kF

21
q2

12D , ~16!

lim
q→`

1

xLind
5

1

r0
S kF

2

5
2

q2

4 D , ~17!

and hence for anya value, there exists

lim
q→0

t̃ I
a~q!52 t̃ I I

a ~q!2 1
9 t̃ I II

a ~q!, ~18!

lim
q→`

t̃ I
a~q!5 3

5 t̃ I I
a ~q!2 t̃ I II

a ~q!, ~19!

and

lim
q→0

t̃ s
a~q!5 t̃ TF~q!1 t̃ vW~q!2 8

9 t̃ I II
a ~q!, ~20!

lim
q→`

t̃ s
a~q!5 t̃ TF~q!1 t̃ vW~q!2 8

5 t̃ I I
a ~q!. ~21!

It can be further shown that

TIII 5V(
q

t̃ I II
a ~q!5^s~r !2a21utvW~r !&

5TvW1~2a21!^dsutvW&

1~2a21!~a21!^ds2utvW&1O~ds3!, ~22!

TII 5V(
q

t̃ I I
a ~q!5

5

9a2
^s~r !2a2 ~5/3!utTF~r !&

5
5

9a2
TTF1

5

9a2
~2a2 5

3 !^dsutTF&

1
5

9a2
~2a2 5

3 !~a2 4
3 !^ds2utTF&1O~ds3!,

~23!

where s(r )5r(r )/r0 , and ds5s(r )21. For the nearly
free electron gas,udsu will be normally much less than 1
and both Eqs.~22! and~23! will be quite accurate up to third
order with a moderatea value (a;1). Therefore, for the
q→0 region,

Ts
a→TTF1 1

9 TvW2 16
9 ~a2 1

2 !^dsutvW&

2 16
9 ~a2 1

2 !~a21!^ds2utvW&1O~ds3!, ~24!

and for theq→` region,

Ts
a→TvW1S 12

8

9a2D TTF2
16

9a2S a2
5

6D ^dsutTF&

2
16

9a2S a2
5

6D S a2
4

3D ^ds2utTF&1O~ds3!. ~25!

A few conclusions can be drawn from the above deriv
tions. First, Eqs.~22! and~24! show that for anya value,Ts

a
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always reduces to the CGE up to second order. Howe
this reduction is exact only whena5 1

2 , implying that there
are no higher-order spurious terms involvingds. Specifi-
cally, Eq.~22! with a5 5

6 has been recognized before,1 but it
was not emphasized enough in later studies.2–4 Second,
though the choice ofa5 5

6 removes all the spuriousds
terms in Eqs.~23! and ~25!, Ts

5/6 does not yield the correc
large-q limit ~CLQL!: TvW2 3

5 TTF . Figure 1 demonstrate
that the employment of the CLQL in the design of KEDF’s
crucial. Figure 1 compares the response functions, obta
via the same procedure as in Eq.~5!, of various limiting
forms of the first two terms in Eqs.~24! and ~25!. It shows
how well the CLQL can reproducexLind for the large-q
region (h.1). Also, TvW2 7

25 TTF , wherea5 5
6 , is much

closer to the CLQL ofxLind than TvW2 23
9 TTF , where a

5 1
2 . This explains whyTs

5/6 performs better thanTs
1/2, since

the CLQL is represented much better byTs
5/6. Third, there is

no singlea value that can simultaneously remove all tho
spuriousds terms and make Eq.~25! reduce to the CLQL.
Among all possiblea values,a5 A5/3 fulfills the latter, but
fails to address the former. These conclusions prompted u
use a linear combination ofTs

a with different a values to
satisfy the above two requirements at the same time.

There is a subtle point that needs further explanati
Though Eq.~5! shows thatTs

a always satisfies the exact LR
(xLind) for any a value, its limiting forms, however, do no
necessarily have the same property, as clearly demonst
by Eq. ~25! and Fig. 1. Similar behavior has also been o
served before for the functional derivatives of the Becke
change functional18 and the DePristo-Kress KEDF.6,19 In this
sense, these functionals are not designedself-consistentlyat

FIG. 1. Comparing the Lindhard function with the respon
functions of limiting forms of various KEDF’s.TTF1

1
9 TvW corre-

sponds to the second-order CGE at theq→0 limit, while others
correspond at theq→` limit.
r,

ed

to

.

ted
-
-

all limits. In the following, we will present a solution for thi
problem by explicitly enforcing this self-consistency.

IV. NEW FUNCTIONALS

We therefore propose the following general trial KEDF

Ts
$a%5TTF1TvW1(

a
laTX

a , ~26!

where $a% are parameters, and$la% are the corresponding
expansion weights. To keep the LR intact, the weights h
to satisfy

(
a

la51. ~27!

Additionally, to yield the CLQL and to minimize the effect
of those spuriousds terms in Eqs.~24! and~25!, the weights
further need to satisfy

(
a

laS 12
8

9a2D 52
3

5
, ~28!

(
a

la~a2 1
2 !5«1 , ~29!

(
a

la~a2 1
2 !~a21!5«2 , ~30!

(
a

la

a2 5/6

a2
5«3 , ~31!

(
a

la

~a2 5/6!~a2 4/3!

a2
5«452

3126«3

12
, ~32!

FIG. 2. The positive domain for the two-parameter case.
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13 468 PRB 58WANG, GOVIND, AND CARTER
where$« i% are small numbers close to 0. Figure 1 shows t
the CLQL approximatesxLind quite well for most ofh val-
ues larger than 1, while the second-order CGE is only g
for a tiny area close to 0. Hence, setting«350 is an appro-
priate and reasonable assumption, and conseque
«452 1

4 . In the following, we will solve Eqs.~27!–~29! and
~31! for the two-parameter and three-parameter cases,
then judge the quality of the selections of$a% and $la%
based on the smallness of«1 and «2 . Equation~30! is not
explicitly solved because it is of second order.

If there are only two terms in the sum of Eq.~26!, the
solution of Eqs.~27!–~29! and ~31! is

la5a2
9
5 b2«12 3

2

b2a
, ~33!

lb5b2
9
5 a2«12 3

2

a2b
, ~34!

a5 2
3 22«11AQ, ~35!

b5 2
3 22«12AQ, ~36!

Q5~2«11 1
6 !22 5

36 , ~37!

where «1 is chosen to be within the two domains:„2`,
2 @(A511)/12#… and „@(A521)/12# ,`…, to ensure that
Q.0 andaÞb. Figures 2 and 3 showa,b,la ,lb ,«2 @via
Eq. ~30!# as functions of«1 . Figures 2 and 3 show that in th
positive domain,u«1u has smaller values andu«2u is uni-
formly close to zero. To keep the magnitudes ofla andlb
small and to ensure a reasonable separation betweena and
b, we choose«150.105, which is just slightly larger tha
(A521)/12 . Thecorresponding values fora,b,la ,lb ,«2
are listed in Table I. For the sake of comparison, we a
include some one-parameter cases as well as a two-param

case:$a,b%5$ 5
6 , 1

2 % whose weights are calculated via Eq
~27! and ~28!,

la5

9
5 2b22

a222b22
, ~38!

lb5

9
5 2a22

b222a22
. ~39!
t

d

tly

nd

o
ter

.

However, if there are three terms in the sum of Eq.~26!,
there will be no definite solution for Eqs.~27!–~29! and~31!
since the unknowns outnumber the equations. We can n
theless fixa5 5

6 andb5 1
2 based on the previous discussio

@Eqs.~22!–~25!#. Then, the unique solution is

g5 5
6 24«1 , ~40!

lg5
g2

8«1~2g21!
, ~41!

lb5
3

8~122g!
, ~42!

la512lb2lg , ~43!

where«1, 5
24 and«1Þ0, 1

12 to keepg positive and different
from the fixed values ofa and b. Figure 4 plots
g,la ,lb ,lg ,«2 as functions of«1 . Since«1 cannot attain a
null value, we choose two small numbers,6 1

24 , for tests,

FIG. 3. The negative domain for the two-parameter case.
TABLE I. Parameters for the trial KEDF’s.

$a,b,g% $la ,lb ,lg% «1 «2 «3 «4

$1% $1% 0.500 0.000 0.167 20.056

$ 5
6 % $1% 0.333 20.056 0.000 0.000

$ 1
2 % $1% 0.000 0.000 21.333 1.111

$A5/3% $1% 0.245 20.062 20.158 0.093

$ 5
6 , 1

2 % $ 55
64, 9

64% 0.286 20.048 20.188 0.156

$0.511,0.402% $1.857,20.857% 0.105 20.060 0.000 20.250

$ 5
6 , 1

2 ,1% $ 35
8 ,2 3

8 ,23% 20.042 20.243 0.000 20.250

$ 5
6 , 1

2 , 2
3 % $2

15
8 ,2 9

8 ,4% 0.042 20.118 0.000 20.250
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which correspond tog5 2
3 and 1, respectively. Other pert

nent parameters are given in Table I.

V. APPLICATIONS

The trial KEDF’s shown in Table I were tested on th
bulk phases of aluminum and compared with the KS res
to find the best parameter set. The Goodwin-Needs-He
local pseudopotential20 together with a plane-wave cutoff o
400 eV were used for both the OF-HK calculations and
KS calculations. The exchange-correlation effects w
treated at the LDA level.21 Details of the implementation o
the OF-HK scheme are given in Refs. 3 and 7. Five b
phases of aluminum were studied, and the results are s
marized in Tables II and III.

We specifically included the hcp structure in the compa
son, since its energy is only slightly above the more sta
fcc structure, making it an excellent test case for our t

FIG. 4. A special three-parameter case witha5
5
6 andb5

1
2 .

TABLE II. Calculated lattice parameter~in Å! for bulk alumi-
num. sc stands for simple cubic, and dia for diamond.

Model fcc bcc sc dia

KS 4.03 3.22 5.34 5.94
$1% 4.06 3.21 5.38 5.97

$ 5
6 % 4.05 3.21 5.42 5.98

$ 1
2 % 3.94 3.17 5.16 5.90

$A5/3% 4.03 3.21 5.34 5.92

$ 5
6 , 1

2 % 4.03 3.21 5.30 5.91

$0.511,0.402% 4.01 3.19 5.28 5.95

$ 5
6 , 1

2 ,1% 4.00 3.19 5.30 5.94

$ 5
6 , 1

2 , 2
3 % 4.01 3.19 5.30 5.93
ts
e

e
e

k
m-

-
le
l

KEDF’s. The experimentally well-characterized vacancy fo
mation ~vf! energy was also computed to further assess
quality of the trial KEDF’s. The vf energy was calculate
using a 32-site cell~31 atoms 1 1 vacancy! via the
expression22

Evf5ES N21,1,
N21

N
V D2

N21

N
E~N,0,V!, ~44!

whereE(N,n,V) is the energy of the system ofN atoms and
n vacancies occupying (N1n) sites in a volumeV. Since
the change in the vf energy due to ionic relaxation
minimal,22 we kept the lattice fixed.

The calculated lattice constants are shown in Table II, a
they all agree quite well with the KS results. Table III show
that Ts

5/6 is marginally wrong in the ordering of the hcp an
bcc structures, which clearly depicts its internal deficien
Since the energy gaps for the five phases are not drastic
different with respect to the different trial KEDF’s, the v
energy provides a unique way to differentiate them. Table
shows clearly that our optimally interpolated KEDF’s are
within 0.1 eV of the well-converged KS result22 and the

FIG. 5. Contour plots of the KS~solid lines! and the OF-HK
~broken lines! electron densities for fcc aluminum in the~100!
plane. The trial KEDF isTs

5/6,1/2,2/3.

TABLE III. Calculated energy per atom~in eV! for bulk alumi-
num. The last column is the vacancy formation~vf! energy, the first
column is the energy for the fcc structure, while other columns
energy increments from the fcc structure. sc stands for simple cu
and dia for diamond.

Model fcc hcpa bcc sc dia vfb

KS 258.331 0.043 0.092 0.264 0.680 0.57
$1% 258.263 0.038 0.058 0.298 0.465 1.41

$ 5
6 % 258.373 0.091 0.070 0.313 0.658 1.16

$ 1
2 % 258.484 0.035 0.120 0.211 0.617 0.33

$A5/3% 258.326 0.065 0.088 0.247 0.699 1.00

$ 5
6 , 1

2 % 258.318 0.064 0.086 0.248 0.671 1.06

$0.511,0.402% 258.370 0.051 0.079 0.251 0.680 0.65

$ 5
6 , 1

2 ,1% 258.392 0.062 0.087 0.248 0.649 0.62

$ 5
6 , 1

2 , 2
3 % 258.381 0.062 0.082 0.247 0.664 0.55

a
The hcp calculations were performed using the fcc near
neighbor distance for each case.
b
The KS result is due to Gillan~Ref. 22!,while the experimental

number is 0.66 eV~Ref. 23!.
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13 470 PRB 58WANG, GOVIND, AND CARTER
experimental value.23 Figures 5 and 6 are contour plo
showing the differences between the KS and theTs

5/6,1/2,2/3

densities for the fcc structure on the~100! plane and the vf
structure, respectively. The differences are found to be q
small. We have also performed vf calculations on larg
cells, and found that the vf energies and electron dens
are well converged. Figure 7 shows the OF-HK electron d
sity around the vacancy for a 256-site simulation cell~255
atoms1 1 vacancy!. A KS calculation on this cell would be
fairly expensive indicating the utility of OF-HK calculation
on large systems. In addition, we found that the calcula
fcc bulk moduli are all within the envelope of 0.7460.02
Mb, which is very close to the experimental value 0.7
Mb.16,24 Overall, in terms of lattice constants, bulk modu
and energies,Ts

5/6,1/2,2/3appears to be the best choice.

FIG. 6. Contour plots of the KS~solid lines! and the OF-HK
~broken lines! electron densities around the vacancy in aluminu
The trial KEDF isTs

5/6,1/2,2/3.
en
s.

-

on
-

te
r
es
-

d

VI. CONCLUSION

In conclusion, we have pointed out certain interesting f
tures of the Wang-Teter, Perrot, and Smargiassi-Mad
kinetic-energy functionals and a simple yet sound way
enhancing their performance without going beyond line
response theory and without introducing a density-depend
kernel. The functionals will be useful forO(N) methods of
first-principles molecular dynamics for the nearly free ele
tron gas.
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FIG. 7. Contour plot of the OF-HK electron density around t

vacancy in aluminum for a 256-site cell~255 atoms1 1 vacancy!.
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In the published version of the erratum,1 the values in
Table III were misprinted. Below is the correct version of t
erratum in its entirety.

After the publication of our previous paper,2 we found
that the real-space evaluation of“r(r ) ~needed for the
evaluation ofTvW@r#) was strongly affected by the finene
of the mesh chosen for a given simulation cell, the pla
wave cutoff ~400 eV! used for the Goodwin-Needs-Hein
local pseudopotential for aluminum3 was not sufficient, and
the Kohn-Sham~KS! calculations~used for comparison with
the HK orbital-free calculations! had not been fully con-
verged with respect to thek-point sampling.4 To remedy the
first problem, we now evaluate“r(r ) in momentum space.5

This scheme is very stable~up to 0.001 eV! against changes
of the mesh beyond a certain minimum mesh size. We a
increased the plane-wave cutoff to 600 eV, and conver
the KS calculations with respect to thek-point sampling.4

The KS calculations were performed using the plane-w
density-functional theory~DFT! code CASTEP,6 with the
finestk-point sampling allowed by the code. The exchang
correlation effects were treated at the local-density appr
mation level.7 The corrected Tables II and III summarize th
final results for different bulk phases of aluminum, whi
should serve as corrections to our previous paper.2 We do not

TABLE II. Calculated lattice parameters (Å) for bulk alum
num. ‘‘sc’’ stands for simple cubic and ‘‘dia’’ for diamond. Lattic
parameters refer to cell size in the cubic unit cell: fcc cell, 4 atom
bcc cell, 2 atoms; sc cell, 8 atoms; and dia cell, 8 atoms.

Modela fcc bcc sc dia

Kohn-Sham 4.03 3.23 5.33 5.84
$1% 4.06 3.25 5.34 6.05

$ 5
6 % 4.04 3.23 5.33 5.94

$ 1
2 % 3.96 3.17 5.31 5.95

$A5/3% 4.03 3.22 5.32 5.92

$ 5
6 , 1

2 % 4.03 3.22 5.32 5.94

$0.511,0.402% 4.00 3.20 5.31 5.89

$ 5
6 , 1

2 ,1% 3.99 3.19 5.30 5.81

$ 5
6 , 1

2 , 2
3 % 4.00 3.20 5.30 5.86

aThe exponents$a% are shown here forTs
$a% ; their corresponding

expansion weights$la% are available from Table I in Ref. 2.
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include the information for the expansion weights$la% since
they are readily available from Table I in Ref. 2.

For the sake of completeness, we also calculated the
cancy formation~vf! energy8 using a 4-site cell~3 atoms
11 vacancy!. Since our plane-wave cutoff andk-point sam-
pling are converged further than previous reports,9 we use
our KS vf numbers as the benchmark.

After comparing the tables, we find some sizable diff
ences between our previous values2 and new results, espe
cially for the vf energies. The ‘‘good’’ agreement is no long
there. Moreover, in terms of absolute energies,Ts

1/2 is the
worst among all these kinetic-energy density function
~KEDF’s! in Tables II and III;Ts

5/6 does quite well by com-
parison. This is not surprising becauseTs

1/2 only takes care of
the q→0 limit, but does a poor job describing theq→`
limit. As we pointed out before,2 the fulfillment of theq
→` limit is much more important than that of theq→0
limit. For the same reason, other KEDF’s shown here p
form better. However, the more general KEDF’s made from

;

TABLE III. Calculated energy per atom~eV! for bulk alumi-
num. The last two columns are the vacancy formation~vf! energies,
and the first column is the energy for the fcc structure, while ot
columns are energy increments from the fcc structure. ‘‘sc’’ sta
for simple cubic and ‘‘dia’’ for diamond.

Modela fcc hcpb bcc sc dia vf4c vf32c

Kohn-Sham 258.336 0.060 0.068 0.250 0.599 0.646 0.6
$1% 258.300 0.040 0.049 0.232 0.521 1.135 1.5

$ 5
6 % 258.331 0.050 0.060 0.227 0.673 1.104 1.3

$ 1
2 % 258.440 0.079 0.099 0.175 0.595 0.748 0.4

$A5/3% 258.351 0.055 0.068 0.220 0.703 1.065 1.2

$ 5
6 , 1

2 % 258.343 0.053 0.065 0.222 0.679 1.076 1.2

$0.511,0.402% 258.390 0.066 0.082 0.204 0.716 0.979 0.9

$ 5
6 , 1

2 ,1% 258.411 0.074 0.092 0.209 0.863 1.020 0.9

$ 5
6 , 1

2 , 2
3 % 258.401 0.070 0.087 0.204 0.771 0.986 0.9

aThe exponents$a% are shown here forTs
$a% ; their corresponding

expansion weights$la% are available from Table I in Ref. 2.
bThe hcp calculations were performed using the fcc nearest ne
bor distance for each case.

cvf4 is for 4-site simulation cell (3 atoms11 vacancy); vf32 is for
32-site simulation cell (31 atoms11 vacancy). The experimenta
vf number is 0.66 eV~Ref. 9!.
©2001 The American Physical Society01-1
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combination of several single KEDF’s as in Eq.~26! of Ref.
2 do not enhance the performance as much as we previo
thought. We also tried other KEDF’s of different combin
tions according to the scheme presented earlier,2 but the re-
tt

us

12990
sly
sults did not improve much. This indicates that fulfillment
the q→` limit and elimination of those spuriousds terms
must be taken into consideration concurrently, while theq
→0 limit is of secondary importance.
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