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Orbital-free kinetic-energy functionals for the nearly free electron gas

Yan Alexander Wang, Niranjan Govind, and Emily A. Carter
Department of Chemistry and Biochemistry, Box 951569, University of California, Los Angeles, California 90095-1569
(Received 15 June 1998

We present an improvement over the Wang-Teter, Perrot, and Smargiassi-Madden kinetic-energy function-
als without going beyond linear-response theory and without introducing a density-dependent kernel. The
improved functionals were tested on bulk aluminum, and excellent results were obtained. Accurate density-
functional calculations using the new functionals on systems larger than one can study by traditional Kohn-
Sham methods are demonstratgs0163-18208)00244-9

[. INTRODUCTION scaling quadratically with grid size. In this sense, the WT,
Perrot, and SM KEDF’s are the optimal choices for simple
The attractive feature of orbital-fredOF) density- bulk metals. In this paper, we propose a simple improvement
functional schemés’ based on the original Hohenberg- over the WT, Perrot, and SM KEDF's in terms of accuracy,
Kohn (HK) theorenfl is that the computational effort essen- While maintaining their practical efficiency.
tially scales linearlyf O(N)] with system size. Thes®(N)
methods comprise a different group from the orbital-based Il. BACKGROUND
O(N) methodg constructed on the traditional Kohn-Sham , .
(KS) schemé? They also offer some benefits over these tra- | "€ WTA Perrot, and SM KEDF's can be conveniently
ditional KS methods. Being purely density based, no orbitalVtten as
localization, no orthonormalization and no Brillouin-zone

sampling are required, and hence calculations can be done Tslp1=Trelp ]+ Towlp ]+ T5lp], @
inexpensively. B _ 3 2\ 2/3 5/3

However, practical realization of the HK the8mequires Trelp]=(tre(r)) =55 (379)*p(r)*®), @
a full knowledge of all the terms in the total-energy func- )
tional. In practice, this has not been possible except for a few Tyl p]=(tyw(r)) = E< [Vp(n)] > 3)
model systemse.g., one-electron systeinsind suitable ap- oW oW 8\ p(r) /|’

proximations have to be made. Over the years, a number of

high-quality exchange-correlation functionals have been de- T pl=(Ap(r)*|K(r=r")|Ap(r")®). (4)
veloped for all kinds of systerm$.By comparison, much less i ) _

has been achieved for the kinetic-energy density functiondlter® Trelp] is the TF functionalT,w[p] is the vW func-
(KEDF).!! Although many KEDF's are availabfe?11-14 tional, Ap(r)“=p(r)“~pg, po is the average electron den-
they lack transferability and cannot be applied with the saméity, « is a positve parameter that defines
merits in different scenarids.For example, the Thomas- X=Wang-Teter-Perrof for o=, X=Perrof for a=1, and
Fermi(TF) functional on the one hand, is only exact at the X=SM>* for a=3. The kernelK,(r—r") is chosen such
free-electron gas limit, and produces no binding for anythat T¢ satisfies the exact LR for a noninteracting electron
system'! The von Weizseker (vW) functional’® on the  gas without exchange,

other hand, is only exact for one- and two-electron ground-

state systems, but fails for any many-electron environrient. .. [ 6*T2[p] 1 772( 1 1- nzl 1+t
The co_nvent|onal _grfadlent e_xpanS|CIDGE) (Ref. 14)_ about 5p2 Ying  Kkel2 47 11—y
the uniform gas limit does improve the TF functional, but Po

diverges after the fourth-order for exponentially decaying 5
densities, and produces algebraically decaying densities al
no shell structure for atoms:*® Moreover, these models do _ _ _ -
not have the correct linear-responéeR) behavior, and = 9/(2k¢) is a dimensionless momenturk, denotes the
hence do not give rise to Friedel oscillatidfs. Foun.er transfqrm, and(|ing |?7the Lindhard susceptlbllllty
There are several KEDFi&Refs. 1—6 with the correct LR function in reciprocal spgc’é: In other words K, (r—r’)
built in. The KEDF’s due to Wang and Tet&nT),! Perrot? ~ ¢an be expressed in reciprocal spack as
and Smargiassi and MaddéBM) (Ref. 3 are very accurate
for nearly-free-electron-gas-like systerfes.g., simple bulk
metal3, while more sophisticated ones by Chacand
co-workers and Carter and co-workérare nearly universal.
KEDF’s based on higher-order response theories are alsshere() is the system volumeyrg=— (kg /#7?) is the TF
available!* The only drawback with the universal KEDF’s LR function, andy,w= — [ke/(37°7?)] is the vW LR func-
(Refs. 5 and Bis that they are computationally expensive, tion. One can see from Eq&) and (6) that

Nhere ke=(37%po)}® is the Fermi wave vector,y

-1 -1 -1
XLind ™~ Xow ™ XTF

ZaZQpS(orl)

FK (r=r") =K (q)=— ()
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12

16
g—o0XLind 3po (16

Ka(0)=0, @ im —— = 1(k§+q2).

and consequently,

2
T~ Ka =)o), ® im L LT 7
g=XLlind P\ S 4

which is in the form of the WT KEDHRef. 1) when «

=2, and hence for any value, there exists
It has been shown th#tfor a uniform systemT reduces o~ ~ -~

to T+ ; for slowly varying densitiesT " yields the CGE up lim t{*(q) = —tij(a)— 5ty (a), (18)

to second orderTrg+ 5 T,w); and for rapidly varying den- a-0

sities, T,y in TS will dominate. Since all the important limits . ~a ~ 0 ~a

can be \;Veproc'isuced using this family of KEIgF’s, it is not I|rr10t, (@)= 3tii(a)—tij (a), (19

surprising that they perform so wéllHowever, a closer in- b

spection shows that for bulk aluminuf® performs better ~and

than T22 for most structure$,even with the inclusion of L~ ~ ~ o~

quadratic responskAt first glance, this seems illogical since limtg(q)=tre(aq) +t,w(q)— sty (a), (20

TY2 exactly reduces to the CGE for slowly varying densities a0

while T3® does not* but the numerical evidence proves the

s Tar T e _ 8%«

opposite. Based on these results, one might easily conclude ;mts(q)_t”(q”t""\’(q) stii(a)- @D
that there must be a defect it'?, and only useT2® in
practical calculations. In the following, we will argue that It can be further shown that
both TY® and TY? are partially correct as well as incorrect,
and a suitable combination of the two indeed yields e_xcellen_t Ti=Q> T (@) =(a ()2 Yt,w(r)
results. Furthermore, one can even generate an entire family q
of new functionals in the same spirit. =Tt (2a—1)(80]t,w)

Il. ANALYSIS AND DISCUSSION +(2a—1)(a—1)(80%|t,w) +O(0°), (22

To understand both the success and failure of the WT, 5
Perrot, and SM KEDF'S;“ we reexpress the gener&{ in Ti=02 Ti(@) = —(a(r2~ Btr(r))
Eq. (1) in reciprocal spaceusing Eqgs.(2)—(8), q o
~ ~ ~ ~ 5 5 5
Tilp]= 02 T@=92 {Tre(@ +Toul@) + (@}, = 9ar [T g (2a 3)dultre)
9
5 5 4 2 3
~ ~ - ~ +—(2a— 3)(a— 3)(d0°|trg) +O(507),
tx(a)=—{tf @+ i@+t (@}, (10 o
(23
2
BKE 56 o6 (11) where a(r)=p(r)/py, and do=0c(r)—1. For the nearly

free electron gas,éc| will be normally much less than 1,
and both Eqs(22) and(23) will be quite accurate up to third
order with a moderater value (@~1). Therefore, for the

tTF(Q): 10p3/3pq P—q>

- 1 _
tow(a)= Epélzqul_%, (120 g—0 region,
1 1 Te—Tret § Tow— $(a— 3){50lt,w)
O Sz 1 P — ¥(a= $)a=1(30%tw)+ O(50), (29
and for theq— o region,
~ k2
ti(a)= ﬁpglffq, (14 N 8 16 5
6(1 pO TS—>TUWJF 1_Q TTF_@ a—g <50’|tTF>
"t"a _ 1 an? o 15 16 5 4 2 3
|||(Q)—quq Py (15 “5.2 % 8/le7 3 (80?|tre)+O(607°). (25)

where, in generalt(q) andp, are the Fourier transforms of A few conclusions can be drawn from the above deriva-
t(r) and p“(r), respectively. It can be readily shoWrthat tions. First, Eqs(22) and(24) show that for anyx value, T¢
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FIG. 1. Comparing the Lindhard function with the response
functions of limiting forms of various KEDF'ST g+ %TUW corre-
sponds to the second-order CGE at the:0 limit, while others
correspond at thg— oo limit.

always reduces to the CGE up to second order. However,
this reduction is exact only whem= %, implying that there
are no higher-order spurious terms involvidg. Specifi-
cally, Eq.(22) with o= 2 has been recognized befdrbut it
was not emphasized enough in later studidsSecond,
though the choice ofx=2 removes all the spurioug$o

Parameters
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0.18

FIG. 2. The positive domain for the two-parameter case.

IV. NEW FUNCTIONALS

T =Tre+ Towt 2 AT,

all limits. In the following, we will present a solution for this
problem by explicitly enforcing this self-consistency.

We therefore propose the following general trial KEDF:

(26)

where{a} are parameters, anfd\,} are the corresponding

terms in Eqs(23) and (25), T2® does not yield the correct expansion weights. To keep the LR intact, the weights have
largeq limit (CLQL): T,w— £Tr¢. Figure 1 demonstrates to satisfy

that the employment of the CLQL in the design of KEDF's is
crucial. Figure 1 compares the response functions, obtained
via the same procedure as in E®), of various limiting
forms of the first two terms in Eq$24) and (25). It shows
how well the CLQL can reproducg,,q for the largeg
region (>1). Also, T,w— 7 Tt¢, Wherea=2, is much
closer to the CLQL ofy,ing than T,w— 2 T1r, Wherea
=1. This explains whyr2"® performs better thaifZ’?, since
the CLQL is represented much better BY/°. Third, there is
no singlea value that can simultaneously remove all those
spuriousdo terms and make Ed25) reduce to the CLQL.
Among all possibler values,a= \/5/3 fulfills the latter, but
fails to address the former. These conclusions prompted us to
use a linear combination ofg with different « values to
satisfy the above two requirements at the same time.

There is a subtle point that needs further explanation.
Though Eq.(5) shows thafT¢ always satisfies the exact LR
(XxLing) for any & value, its limiting forms, however, do not
necessarily have the same property, as clearly demonstrated
by Eq. (25 and Fig. 1. Similar behavior has also been ob-
served before for the functional derivatives of the Becke ex-
change functionaf and the DePristo-Kress KEDF? In this
sense, these functionals are not desigselftconsistenthat

>

a

A

[e3

1.

DR

; N (a— %)281,

> Nala— H(a—1)=s,,

a

a— 5/6
zka 2 = €3,
a o
(a—5/6)(a—4/3  3+26e;
T

(27)

Additionally, to yield the CLQL and to minimize the effects
of those spuriou$o terms in Eqs(24) and(25), the weights
further need to satisfy

(28)

(29

(30

(31)

(32
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where{e;} are small numbers close to 0. Figure 1 shows that 3.00 y -

the CLQL approximateg, ing quite well for most ofn val-
ues larger than 1, while the second-order CGE is only good
for a tiny area close to 0. Hence, setting=0 is an appro-
priate and reasonable assumption, and consequently
g4=—%. In the following, we will solve Eqs(27)—(29) and
(31) for the two-parameter and three-parameter cases, and
then judge the quality of the selections p#} and {\,}
based on the smallness of ande,. Equation(30) is not
explicitly solved because it is of second order.

If there are only two terms in the sum of E(6), the
solution of Eqs.(27)—(29) and(31) is

2
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=
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FIG. 3. The negative domain for the two-parameter case.
— 1\2 5

Q=(2e1+ )" 55, S However, if there are three terms in the sum of Ezf),

where g, is chosen to be within the two domainé-=,  there will be no definite solution for Eq&7)—(29) and(31)
—[(5+1)/12])) and ([(y5—1)/12],), to ensure that since the unknowns outnumber the equations. We can none-
Q>0 anda# B. Figures 2 and 3 show,8,\,,Ag,&;, [Via  theless fixa=2 andB= 3 based on the previous discussions
Eqg.(30)] as functions ot ;. Figures 2 and 3 show that in the [Egs.(22)—(25)]. Then, the unigue solution is

positive domain,|e;| has smaller values ani,| is uni-

formly close to zero. To keep the magnituqlesngand Ng y= 2 —4¢g,, (40)
small and to ensure a reasonable separation betwesamnd
B, we chooses;=0.105, which is just slightly larger than 2
(v5—1)/12. Thecorresponding values fag, 8\, g, &2 Ny =, (41)
are listed in Table I. For the sake of comparison, we also 8e1(2y—1)
include some one-parameter cases as well as a two-parameter
case:{a,B}={%,3} whose weights are calculated via Egs. Np= 3 , (42)
(27) and (29), 8(1-2y)
9 -2 —
s_g Ne=1-Ng—X\,, (43)
e (38)
“« wheree <% ande;#0,75 to keepy positive and different
9 5 from the fixed values ofa and B. Figure 4 plots
- . . :
N p= (39) ¥:Na:N g\, €5 as functions ok, . Sincee; cannot attain a
B 2—a? null value, we choose two small numbers;, for tests,
TABLE |. Parameters for the trial KEDF's.
{e,B,7} {)\al)\ﬁl)\y} €1 €2 €3 €4
{1} {1} 0.500 0.000 0.167 —0.056
{%} {1} 0.333 —0.056 0.000 0.000
{%} {1} 0.000 0.000 —1.333 1.111
{\/5/3} {1 0.245 -0.062 -0.158 0.093
51 (58 0.286 —0.048 -0.188 0.156
{0.511,0.402 {1.857-0.85% 0.105 —0.060 0.000 —0.250
siq (35,2 _3 —0.042 —0.243 0.000 —0.250
(212 (-2.-34 0.042 -0.118 0.000 -0.250
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6.00 T T TABLE lIl. Calculated energy per atortin eV) for bulk alumi-
—y ! ': | : num. The last column is the vacancy formati@f) energy, the first
e ! ! ;' II column is the energy for the fcc structure, while other columns are
______ f ! '-‘ :' 1 energy increments from the fcc structure. sc stands for simple cubic,
am | v ! vl | and dia for diamond.
-y PV
_— /
A, / |Il Model fcc hcd bcc  sc dia W
/
7 ‘\ KS —58.331 0.043 0.092 0.264 0.680 0.577
L, e = \ 7] {1} —58.263 0.038 0.058 0.298 0.465 1.419
R —
2 \ {2 —58.373 0.091 0.070 0.313 0.658 1.161
g {3 —58.484 0.035 0.120 0.211 0.617 0.337
a 000 b __ {\/5/3} —58.326 0.065 0.088 0.247 0.699 1.008
_________________ ‘ (&1 —58.318 0.064 0.086 0.248 0.671 1.069
“““ ,' ‘I {0.511,0.402 -58.370 0.051 0.079 0.251 0.680 0.651
\ ;4\ :' (211 —58.392 0.062 0.087 0.248 0.649 0.629
200 \ i\ l (512 —58.381 0.062 0.082 0.247 0.664 0.556
i i
[} (| . .
! ! || ,: *The hcp calculations were performed using the fcc nearest-
'-I " 1 E peighbor distance for each case.
40w 020 500 L 0.20 The KS result is due to GillafiRef. 22,while the experimental

number is 0.66 e\(Ref. 23.

KEDF's. The experimentally well-characterized vacancy for-
mation (vf) energy was also computed to further assess the
quality of the trial KEDF's. The vf energy was calculated
using a 32-site cell(31 atoms + 1 vacancy via the
expressioff

FIG. 4. A special three-parameter case with 3 and 8= 3.

which correspond tay=2% and 1, respectively. Other perti-
nent parameters are given in Table .

N—1 N—1
V. APPLICATIONS EVf_E( N-11; N Q) N E(N,00), (44)
The trial KEDF’'s shown in Table | were tested on the WhereE(N,n,Q) is the energy of the system bfatoms and
bulk phases of aluminum and compared with the KS result§ vacancies occupyingN+n) sites in a volume}. Since
to find the best parameter set. The Goodwin-Needs-Heinthe change in the vf energy due to ionic relaxation is
local pseudopotentidl together with a plane-wave cutoff of minimal?* we kept the lattice fixed.
400 eV were used for both the OF-HK calculations and the The calculated lattice constants are shown in Table II, and
KS calculations. The exchange-correlation effects werdhey all agree quite well with the KS results. Table Il shows
treated at the LDA level! Details of the implementation of that T2 is marginally wrong in the ordering of the hcp and
the OF-HK scheme are given in Refs. 3 and 7. Five bulkbcc structures, which clearly depicts its internal deficiency.
phases of aluminum were studied, and the results are sun®ince the energy gaps for the five phases are not drastically
marized in Tables Il and IlI. different with respect to the different trial KEDF's, the vf
We specifically included the hcp structure in the compari-energy provides a unique way to differentiate them. Table III
son, since its energy is only slightly above the more stablshows clearly that our optimally interpolated KEDF's are alll
fce structure, making it an excellent test case for our triawithin 0.1 eV of the well-converged KS restfitand the

TABLE Il. Calculated lattice parametéin A) for bulk alumi- y
num. sc stands for simple cubic, and dia for diamond.
Model fcc bcc sc dia
KS 4.03 3.22 5.34 5.94
{1 4.06 3.21 5.38 5.97
{%} 4.05 3.21 5.42 5.98
{%} 3.94 3.17 5.16 5.90
{\/5/3} 4.03 3.21 5.34 5.92
{%% 4.03 3.21 5.30 5.91 \ !
{0.511,0.40%2 4.01 3.19 5.28 5.95 \ Al
51
&30 400 319 530 594 FIG. 5. Contour plots of the KEsolid lineg and the OF-HK

{2,332 4.01 3.19 5.30 5.93 (broken lines electron densities for fcc aluminum in th@00
plane. The trial KEDF igr2/6:422,
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=

h A A G 6 G 6 - 4

FIG. 6. Contour plots of the K$solid lineg and the OF-HK FIG. 7. Contour plot of the OF-HK electron density around the
(broken line$ electron densities around the vacancy in aluminum.vacancy in aluminum for a 256-site cé55 atoms+ 1 vacancy.
The trial KEDF isT2/61/2:23 Dark areas represent low electron densities and light areas represent
high electron densities.

experimental valué® Figures 5 and 6 are contour plots VI. CONCLUSION

showing the differences between the KS and T&1/2%3 | . . o .

" n conclusion, we have pointed out certain interesting fea-
densities for the fcc structure on tii€00 plane and the vf oo ot the Wang-Teter, Perrot, and Smargiassi-Madden
structure, respectively. The differences are found to be qu“ﬁinetic-energy functionals and a simple yet sound way of
small. We have also performed vf calculations on largerenhancing their performance without going beyond linear-
cells, and found that the vf energies and electron densitiefesponse theory and without introducing a density-dependent
are well converged. Figure 7 shows the OF-HK electron denkernel. The functionals will be useful f&€(N) methods of
sity around the vacancy for a 256-site simulation ¢2B5  first-principles molecular dynamics for the nearly free elec-
atoms+ 1 vacancy. A KS calculation on this cell would be tron gas.
fairly expensive indicating the utility of OF-HK calculations
on large systems. In addition, we found that the calculated
fcc bulk moduli are all within the envelope of 0.74.02 We thank Dr. Asme Christensen for some of the KS
Mb, which is very close to the experimental value 0.725results. Financial support for this project was provided by the
Mb.'®2* Overall, in terms of lattice constants, bulk moduli National Science Foundation, the Army Research Office, and
and energiesT>%*2?3appears to be the best choice. the Air Force Office of Scientific Research.
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Erratum: Orbital-free kinetic-energy functionals for the nearly free electron gas
[Phys. Rev. B 58, 1346%19998 ]

Yan Alexander Wang, Niranjan Govind, and Emily A. Carter
(Published 5 September 2001
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In the published version of the erratunthe values in include the information for the expansion weiglis,} since
Table Ill were misprinted. Below is the correct version of thethey are readily available from Table | in Ref. 2.
erratum in its entirety. For the sake of completeness, we also calculated the va-
After the publication of our previous papemve found — cancy formation(vf) energy using a 4-site cel(3 atoms
that the real-space evaluation &p(r) (needed for the +1 vacancy. Since our plane-wave cutoff akdpoint sam-
evaluation ofT [ p]) was strongly affected by the fineness Pling are converged further than previous repBriee use
of the mesh chosen for a given simulation cell, the plane®ur KS vf numbers as the benchmark. _ ,
wave cutoff (400 eV} used for the Goodwin-Needs-Heine After comparing the ta_lbles, we find some sizable differ-
local pseudopotential for alumindmvas not sufficient, and €NCeS between our prewous“valﬂg’md new results, espe-
the Kohn-ShaniKS) calculationsused for comparison with  Cially for the vf energies. The “good” agreement Is no longer
the HK orbital-free calculationshad not been fully con- there. Moreover, in terms of absolute energigs? is the
verged with respect to the-point sampling To remedy the ~Worst among all these klnetlc/:-energy density functionals
first problem, we now evaluaf@p(r) in momentum space. (KEDF's) in Tables Il and III;TZ"® does quite well by com-
This scheme is very stablep to 0.001 eV against changes Parison. This is not surprising becaut¥” only takes care of
of the mesh beyond a certain minimum mesh size. We alsthe q—0 limit, but does a poor job describing thg—c°
increased the plane-wave cutoff to 600 eV, and convergetimit. As we pointed out beforé,the fulfillment of theq
the KS calculations with respect to ttepoint sampling. ~ —o° limit is much more important than that of thg—0
The KS calculations were performed using the plane-wavdimit. For the same reason, other KEDF’'s shown here per-
density-functional theory(DFT) code casTER® with the  form better. However, the more general KEDF's made from a

finestk-point sampling allowed by the code. The exchange- TABLE Ill. Calculated energy per atorteV) for bulk alumi-

corr_elatlon e;ffects were treated at the local-density approXiz m The last two columns are the vacancy formafidi energies,
mation level: The corrected Tables Il and Il summarize the 54 the first column is the energy for the fcc structure, while other

final results for different bulk phases of aluminum, which ¢olymns are energy increments from the fcc structure. “sc” stands
should serve as corrections to our previous papeée do not oy simple cubic and “dia” for diamond.

TABLE Il. Calculated lattice parameters (A) for bulk alumi- ModeF fcc  hcp® becc sc dia v vf32°

num. “sc” stands for S|mple gublc and_“dla’i for diamond. Lattice Kohn-Sham —58.336 0.060 0.068 0.250 0.599 0.646 0.626
parameters refer to cell size in the cubic unit cell: fcc cell, 4 atoms

bcc cell, 2 atoms; sc cell, 8 atoms; and dia cell, 8 atoms. 1} —58.300 0.040 0.049 0.232 0.521 1.135 1.562
{2} —58.331 0.050 0.060 0.227 0.673 1.104 1.371
ModeP fcc bce sc dia {3 —58.440 0.079 0.099 0.175 0.595 0.748 0.482
Kohn-Sham 4.03 323 5133 5.84 {;/—51/3} —58.351 0.055 0.068 0.220 0.703 1.065 1.230
1 4.06 3.95 5.34 6.05 21 —58.343 0.053 0.065 0.222 0.679 1.076 1.280
(8 4.04 323 533 5.94 {0.511,0.402 —58.390 0.066 0.082 0.204 0.716 0.979 0.975
(4 3.96 317 5.31 5.95 2in —58.411 0.074 0.092 0.209 0.863 1.020 0.959
{\/5/3} 4.03 3922 532 592 {é,%,é —58.401 0.070 0.087 0.204 0.771 0.986 0.953
51 4. .22 .32 94
62 03 3 53 >-9 The exponentga} are shown here foTt*); their corresponding
{0.511,0.402 4.00 3.20 5.31 5.89 expansion weight$\ ,} are available from Table | in Ref. 2.
230 3.99 3.19 5.30 5.81 The hcp calculations were performed using the fcc nearest neigh-
g%% 4.00 3.20 5.30 5.86 bor distance for each case.

“vf4 is for 4-site simulation cell (3 atomsl vacancy); vf32 is for
#The exponent§a} are shown here foil'i“}; their corresponding  32-site simulation cell (31 atomsl vacancy). The experimental
expansion weight$\ .} are available from Table | in Ref. 2. vf number is 0.66 eV(Ref. 9.
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combination of several single KEDF's as in E@6) of Ref.  sults did not improve much. This indicates that fulfillment of
2 do not enhance the performance as much as we previousilje g—« limit and elimination of those spuriouSo terms
thought. We also tried other KEDF's of different combina- must be taken into consideration concurrently, while the
tions according to the scheme presented edrlert the re-  —0 limit is of secondary importance.
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