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Klüner et al. Reply: The preceding Comment [1] is con-
cerned with whether we, in our Letter [2], adequately jus-
tified our hybrid wave function/density-functional (DFT)
embedding theory and the choice of kinetic energy den-
sity functionals (KEDFs) used to construct the embedding
operator yemb. The Comment has two problems: (i) a mis-
understanding of our theory and (ii) an example of ques-
tionable relevance.

First, length restrictions did not permit a complete re-
derivation of the formalism; a thorough, formal justifica-
tion is given in detail in [3,4]. The first criticism leveled
is that since Tnad

s �rI, rII� is a nonlinear functional of rI,
use of yemb as an operator must be postulated. This is
simply not so. Our embedding potential, derived varia-
tionally within (formally exact) DFT as the operator that
influences the density in the region of interest due to the
presence of the surroundings, is the same as the one writ-
ten by Wesołowski in his Eq. (1). Our yemb is used only as
an additional one-electron potential in the Fock operator to
obtain the wave function in the embedded region, but never
to obtain the total energy Etot; i.e., our Etot does not con-
tain �fij �dTnad

S �rI, rII��drI� jfi�, and hence we do not
need to postulate its use and its nonlinearity is not an issue.
To clarify, our Etot is calculated as given in Eq. (16) of [4],
where the subsystem interaction terms in Etot appear only
within the entire system’s DFT total energy, EDFT

tot �rtot�.
The embedded region total energies in Eq. (16), E

ab,DFT
I ,

involve only terms within that region; i.e., yemb does not
appear explicitly (to avoid double counting interactions).
yemb does, however, have an implicit effect on E

ab,DFT
I , as

the wave functions in region I are affected by yemb.
Wesołowski’s second concern is the choice of KEDF

and its corresponding potential. As stated in [2], details on
the construction of the KEDF potential (KEFP)—again we
do not use the KEDF itself, only its potential — are pub-
lished elsewhere [5]. In the Letter we provided a number
of tests for the validity and justification of the choice of
KEFP: (i) a DFT in DFT embedding, in which the elec-
tron density was virtually identical to that of a periodic
DFT calculation (verifying the accuracy of the KEFP and
the embedding scheme; see Fig. 1) and (ii) the sensitivity
of adsorption energies to the choice of KEFP was reported
in Table II, Ref. [2]. These latter tests show the importance
of including gradient corrections in both the exchange-
correlation and KEFP to achieve high accuracy.

As evidence disputing the validity of our KEDF choice,
Wesołowski offers references and the Comment’s figure,
all of which assess the ability of various KEDFs to describe
weak intermolecular forces (e.g., dispersion). Surely it is
clear that KEDFs appropriate for van der Waals interac-
tions are not necessarily the ones appropriate for metals
(the territory of our “claim”); it is well known that in the
case of exchange-correlation functionals, those that work
well for metals fall short in their description of weakly in-
teracting molecules (the purview of Wesołowski’s cases)
[6]. We proved in our Letter that our choice of KEDF
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FIG. 1. DFT [local density approximation (LDA)] in DFT
(LDA) embedding calculation for a Pd3 cluster embedded in
a three-layer Pd slab.

works properly for metals and whether it works for van
der Waals or hydrogen-bonded systems was not claimed
by us. (N.B., we did not apply the conventional gradient
expansion up to second order as implied by Wesołowski;
rather, we introduced a local truncation criterion based on
the ratio of the Thomas-Fermi and von Weizsäcker poten-
tials [5]; he does not provide in his papers or this figure
results for such a functional.) Last, note that the Com-
ment’s figure showing the inaccuracy of the conventional
gradient expansion for a molecular dimer is not relevant to
our method, since, as explained above, we do not use the
KEDF to calculate total energies as he did to generate the
Comment’s figure; we use only the kinetic energy poten-
tial in the embedding potential as an additive term to the
Fock matrix. This is a second order effect and thus so are
the approximations introduced. Therefore, the accuracy of
the KEDFs used in our theory is not at all as crucial as in
his orbital-free DFT method, where he must use it to ob-
tain a total energy.
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Comment on “Prediction of Electronic Excited
States of Adsorbates on Metal Surfaces
from First Principles”

In a recent Letter, Klüner et al. [1] reported a study of
excited states of CO adsorbed on the Pd(111) surface using
the embedded-molecule approach. Klüner et al. applied
an ad hoc combination of two approaches (a) the wave-
function formalism to describe the adsorbant and (b) the
orbital-free first-principles-based embedding method intro-
duced by Wesolowski and Warshel [2] which was based
on Cortona’s formulation of density functional theory [3].
Some issues which might influence the obtained results
were, however, not addressed in Ref. [1].

One is more general and concerns the idea of using V eff
emb

of Ref. [2] as an “embedding operator.” V eff
emb was derived

based on the variational principle and the representation
of the ground-state Kohn-Sham total energy functional as
a bifunctional E�rI, rII�. In Ref. [2], it was shown that
embedding potentials appearing in various embedding ap-
proaches can be cast in a universal orbital-free kinetic-
energy-dependent form obtained by means of constrained
minimization of E�rI,rII� in which only the electron den-
sity of the selected subsystem (rI) is varied. Subtracting
from the total effective potential defined in Eqs. (18)–(21)
of Ref. [2] the component which corresponds to the iso-
lated subsystem I leads to the following form of V eff

emb:

V eff
emb �

X
AII

2
ZAII

jr 2 RAII j
1

Z rII�r 0�
jr0 2 rj

dr0

1
dExc�rI�r� 1 rII�r��

drI
2

dExc�rI�r��
drI

1
dTnad

s �rI, rII�
drI

, (1)

where Tnad
s �rI, rII� � Ts�rI 1 rII� 2 Ts�rI� 2 Ts�rII�.

This form of V eff
emb is a result of a decomposition of the

total effective potential in ground-state density-functional
theory. Since Tnad

s �rI, rII� is not a linear functional of rI,
the use of Eq. (1) as an “embedding operator” should be
clearly identified as a postulate.

The second issue concerns the choice for the ap-
proximate kinetic energy functional in Ref. [1]. In the
embedding formalism introduced in Ref. [2], an approxi-
mate kinetic energy functional (T̃s) appears always in
expressions involving differences of Ts. The accuracy of
T̃ nad

s �rI, rII� appears, therefore, as a crucial ingredient of
this embedding scheme, not the absolute accuracy of its
individual components: T̃s�rI 1 rII�, T̃s�rI�, or T̃s�rII�.
Our direct analyses of the accuracy of different approxi-
mations for T̃nad

s �rI, rII� [4] showed that the accuracy
of T̃s does not necessarily imply a good accuracy of
T̃ nad

s �rI, rII�. In fact, the second-order expansion leads to
a much worse approximation for Tnad

s �rI, rII� (see Fig. 1)

and for dTnad
s �rI,rII�

drI
(see Fig. 3b in Ref. [4a]) than does the

Thomas-Fermi model. The authors of Ref. [1] appear to
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FIG. 1. The potential energy curve for the FH . . . FH dimer
obtained using Kohn-Sham calculations (KS) and the subsystem
based approach (KSCED) using different approximate expres-
sions for Tnad

s �rI, rII�. See Ref. [4c] for details.

have overlooked this particular feature of Tnad
s �rI, rII�

(and dT nad
s �rI,rII�

drI
) and rely on a rather good performance of

their approximation for dT̃s�r�
dr without verifying the accu-

racy of dT̃s�rI1rII�
drI

2
dT̃s�rI�

drI
. We performed such studies

[4] leading to a very good approximation for
dTnad

s �rI,rII�
drI

for small rI 2 rII overlaps. It has been applied
for various problems (see Ref. [5] and references therein).

We strongly feel that the above issues should have been
clarified by the authors prior to claiming, as they do, far-
reaching applicability of the method they devise. Strong
dependence of the interaction energies collected in Table II
of Ref. [1] on the choice of the approximation for Ts�r�
indicates the need of dedicated studies of the accuracy of
dT̃nad

s �rI,rII�
drI

applied in Ref. [1]. Moreover, the applied ap-
proximation for Ts�r� [see Eq. (5) in Ref. [1] ] seems to be
very similar to the conventional second-order expansion —
a rather poor approximation for dTnad

s �rI ,rII�
drI

. Therefore, the
good numerical results obtained in Ref. [1] for a particular
problem cannot be used as a validation for general accu-
racy of the applied embedding potential.
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